Skip to main content
Erschienen in: Experimental Mechanics 4/2021

20.01.2021 | Research paper

Machine Learning Neural-Network Predictions for Grain-Boundary Strain Accumulation in a Polycrystalline Metal

verfasst von: R. B. Vieira, J. Lambros

Erschienen in: Experimental Mechanics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

Microstructural features such as grain boundaries play a significant role in the macroscopic plastic response of polycrystalline metals. However, a quantitative link between plastic strain accumulation at grain boundaries and material response in plasticity dominated phenomena is still lacking.

Objective

Here we seek to develop predictive relations between a material’s granular microstructure and the accumulation of plastic strains at the microstructural level during plastic deformation.

Methods

A single-input neural network approach was applied to predict the residual plastic strain fields at regions surrounding grain boundaries of an austenitic stainless steel. The neural network was trained on data obtained by applying a very-high resolution digital image correlation (DIC) experimental technique that allows the measurement of grain-scale strains aligned to the underlying microstructure obtained from electron backscatter diffraction (EBSD) scans.

Results

The neural-network-predicted and the DIC-measured strain fields showed good correlation for most of the tested cases. Best individual agreement was found when each microstructure was used to predict fields in its own case. However, best overall average predictions were seen when multiple samples were used for the network training.

Conclusions

The results showed that the local geometrical angle between a grain boundary and the loading axes is in many cases a good predictor for the accumulation of strains at the given boundary. The expected limitations of this single parameter approach (grain boundary angle alone cannot be a good predictor for varying strains along a straight grain boundary, for example) were seen as the reason for the situations where predictions were not as good.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Eshelby J, Frank F, Nabarro F (1951) The equilibrium of linear arrays of dislocations. Philos Mag 42:351–364MathSciNetCrossRef Eshelby J, Frank F, Nabarro F (1951) The equilibrium of linear arrays of dislocations. Philos Mag 42:351–364MathSciNetCrossRef
2.
Zurück zum Zitat Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28 Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28
3.
Zurück zum Zitat Hall E (1951) The deformation and aging of mild steel:III. Discussion of results. Proc Phys Soc Lond 38(10):747–753CrossRef Hall E (1951) The deformation and aging of mild steel:III. Discussion of results. Proc Phys Soc Lond 38(10):747–753CrossRef
4.
Zurück zum Zitat Sutton AP, Balluffi RW (2006) Interfaces in crystalline materials. Oxford University Press, Oxford Sutton AP, Balluffi RW (2006) Interfaces in crystalline materials. Oxford University Press, Oxford
5.
Zurück zum Zitat Lee TC, Robertson IM, Birnbaum H (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23(5):799CrossRef Lee TC, Robertson IM, Birnbaum H (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23(5):799CrossRef
6.
Zurück zum Zitat Jin ZH, Gumbsch P (2008) Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater 56(5):1126CrossRef Jin ZH, Gumbsch P (2008) Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater 56(5):1126CrossRef
7.
Zurück zum Zitat Abuzaid W, Sangid M, Carroll J, Sehitoglu H (2012) Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids 60(6):1201–1220CrossRef Abuzaid W, Sangid M, Carroll J, Sehitoglu H (2012) Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids 60(6):1201–1220CrossRef
8.
Zurück zum Zitat Abuzaid W, Sehitoglu H, Lambros J (2013) Plastic strain localization and fatigue micro-crack formation in Hastelloy X. Mater Sci Eng A 561:507–519CrossRef Abuzaid W, Sehitoglu H, Lambros J (2013) Plastic strain localization and fatigue micro-crack formation in Hastelloy X. Mater Sci Eng A 561:507–519CrossRef
9.
Zurück zum Zitat Figueroa J, Laird C (1983) Crack initiation mechanisms in copper polycrystals cycled under constant strain amplitudes and in step tests. Mater Sci Eng 60(1):45–58CrossRef Figueroa J, Laird C (1983) Crack initiation mechanisms in copper polycrystals cycled under constant strain amplitudes and in step tests. Mater Sci Eng 60(1):45–58CrossRef
10.
Zurück zum Zitat Chan K (2010) Roles of microstructure in fatigue crack initiation. Int J Fatigue 32(9):1428–1447CrossRef Chan K (2010) Roles of microstructure in fatigue crack initiation. Int J Fatigue 32(9):1428–1447CrossRef
11.
Zurück zum Zitat Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2013) On the interactions between strain accumulation, microstructure, and fatigue crack behavior. Int J Fract 180:223–241CrossRef Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2013) On the interactions between strain accumulation, microstructure, and fatigue crack behavior. Int J Fract 180:223–241CrossRef
12.
Zurück zum Zitat Littlewood P, Wilkinson A (2014) Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading. Int J Fatigue 43:111–119CrossRef Littlewood P, Wilkinson A (2014) Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading. Int J Fatigue 43:111–119CrossRef
13.
Zurück zum Zitat Gurney K (1997) An introduction to neural networks. UCL Press, LondonCrossRef Gurney K (1997) An introduction to neural networks. UCL Press, LondonCrossRef
14.
Zurück zum Zitat McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Math Biophysics 7:115–133MathSciNetCrossRef McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Math Biophysics 7:115–133MathSciNetCrossRef
15.
Zurück zum Zitat Sourmail T, Bhadeshia H, MacKay D (2002) Neural network model of creep strength of austenitic stainless steels. Mater Sci Technol 18:655–663CrossRef Sourmail T, Bhadeshia H, MacKay D (2002) Neural network model of creep strength of austenitic stainless steels. Mater Sci Technol 18:655–663CrossRef
16.
Zurück zum Zitat Lee D, Hong S, Cho S, Joo W (2005) A study on fatigue damage modeling using neural networks. J Mech Sci Technol 19(7):1393–1404CrossRef Lee D, Hong S, Cho S, Joo W (2005) A study on fatigue damage modeling using neural networks. J Mech Sci Technol 19(7):1393–1404CrossRef
17.
Zurück zum Zitat Kang J, Choi B, Lee H, Kim J, Kim K (2006) Neural network application in fatigue damage analysis under multiaxial random loadings. Int J Fatigue 28(2):132–140CrossRef Kang J, Choi B, Lee H, Kim J, Kim K (2006) Neural network application in fatigue damage analysis under multiaxial random loadings. Int J Fatigue 28(2):132–140CrossRef
18.
Zurück zum Zitat Pujol J, Pinto J (2011) A neural network approach to fatigue life prediction. Int J Fatigue 33(3):313–322CrossRef Pujol J, Pinto J (2011) A neural network approach to fatigue life prediction. Int J Fatigue 33(3):313–322CrossRef
19.
Zurück zum Zitat Martinez M, Ponce M (2019) Fatigue damage effect approach by artificial neural network. Int J Fatigue 124:42–47CrossRef Martinez M, Ponce M (2019) Fatigue damage effect approach by artificial neural network. Int J Fatigue 124:42–47CrossRef
21.
Zurück zum Zitat Lin Y, Zhang J, Zhong J (2008) Application of neural networks to predict the elevated temperature. Comput Mater Sci 43(4):752–758CrossRef Lin Y, Zhang J, Zhong J (2008) Application of neural networks to predict the elevated temperature. Comput Mater Sci 43(4):752–758CrossRef
22.
Zurück zum Zitat Li H-Y, Wang X-F, Wei D-D, Hu J-D, Li Y-H (2012) A comparative study on modified zerilli–Armstrong, arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in t24 steel. Mater Sci Eng 536:216–222CrossRef Li H-Y, Wang X-F, Wei D-D, Hu J-D, Li Y-H (2012) A comparative study on modified zerilli–Armstrong, arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in t24 steel. Mater Sci Eng 536:216–222CrossRef
23.
Zurück zum Zitat Jones R, Templeton J, Sanders C, Ostien J (2018) Machine learning models of plastic flow based on representation theory. Comput Model Eng Sci 117:309–342 Jones R, Templeton J, Sanders C, Ostien J (2018) Machine learning models of plastic flow based on representation theory. Comput Model Eng Sci 117:309–342
24.
Zurück zum Zitat Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2010) An experimental methodology to relate local strain to microstructural texture. Rev Sci Instrum 81(8):083703CrossRef Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2010) An experimental methodology to relate local strain to microstructural texture. Rev Sci Instrum 81(8):083703CrossRef
25.
Zurück zum Zitat Swati U, Li H, Bowen P, Rabiei A (2018) A study on tensile properties of alloy 709 at various temperatures. Mater Sci Eng A 733:338–349CrossRef Swati U, Li H, Bowen P, Rabiei A (2018) A study on tensile properties of alloy 709 at various temperatures. Mater Sci Eng A 733:338–349CrossRef
26.
Zurück zum Zitat Naoi H, Mimura H, Ohgami M, Sakakibara M, Araki S, Sogoh Y, Ogawa T, Sakurai H, Fujita T (1993) Development of tubes and pipes for ultra-supercritical thermal power plant boilers. Nippon Steel Tech Rep 57:22–27 Naoi H, Mimura H, Ohgami M, Sakakibara M, Araki S, Sogoh Y, Ogawa T, Sakurai H, Fujita T (1993) Development of tubes and pipes for ultra-supercritical thermal power plant boilers. Nippon Steel Tech Rep 57:22–27
27.
Zurück zum Zitat Ding R, Yan J, Li H, Yu S, Rabiei A, Bowen P (2019) Deformation microstructure and tensile properties of alloy 709 at different temperatures. Mater Des 176 Ding R, Yan J, Li H, Yu S, Rabiei A, Bowen P (2019) Deformation microstructure and tensile properties of alloy 709 at different temperatures. Mater Des 176
28.
Zurück zum Zitat Sourmail T, Bhadeshia H (2005) Microstructural evolution in two variants of NF709 at 1023 and 1073 K. Metall Mater Trans A 36(1):23–34CrossRef Sourmail T, Bhadeshia H (2005) Microstructural evolution in two variants of NF709 at 1023 and 1073 K. Metall Mater Trans A 36(1):23–34CrossRef
29.
Zurück zum Zitat Lall A, Sarkar S, Ding R, Bowen P, Rabiei A (2019) Performance of alloy 709 under creep-fatigue at various dwell times. Mater Sci Eng A 761:138028CrossRef Lall A, Sarkar S, Ding R, Bowen P, Rabiei A (2019) Performance of alloy 709 under creep-fatigue at various dwell times. Mater Sci Eng A 761:138028CrossRef
30.
Zurück zum Zitat Shaber N, Stephens R, Ramirez J, Potirniche G, Taylor M, Charit I, Pugesek H (2019) Fatigue and creep-fatigue crack growth in alloy 709 at elevated temperatures. Mater High Temp 36(6):562–574CrossRef Shaber N, Stephens R, Ramirez J, Potirniche G, Taylor M, Charit I, Pugesek H (2019) Fatigue and creep-fatigue crack growth in alloy 709 at elevated temperatures. Mater High Temp 36(6):562–574CrossRef
31.
Zurück zum Zitat Sutton M, Wolters W, Peters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139CrossRef Sutton M, Wolters W, Peters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139CrossRef
32.
Zurück zum Zitat Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRef
33.
Zurück zum Zitat Wilkinson A, Britton T (2012) Strains, planes, and EBSD in materials science. Mater Today 15(9):366–376CrossRef Wilkinson A, Britton T (2012) Strains, planes, and EBSD in materials science. Mater Today 15(9):366–376CrossRef
34.
Zurück zum Zitat Meyers MAE (1982) Model for the effect of grain size on the yield stress of metals. Philos Mag A 46(5):737–759CrossRef Meyers MAE (1982) Model for the effect of grain size on the yield stress of metals. Philos Mag A 46(5):737–759CrossRef
35.
Zurück zum Zitat Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441MathSciNetCrossRef Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441MathSciNetCrossRef
Metadaten
Titel
Machine Learning Neural-Network Predictions for Grain-Boundary Strain Accumulation in a Polycrystalline Metal
verfasst von
R. B. Vieira
J. Lambros
Publikationsdatum
20.01.2021
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 4/2021
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-020-00687-1

Weitere Artikel der Ausgabe 4/2021

Experimental Mechanics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.