Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.01.2018 | Computation | Ausgabe 9/2018

Journal of Materials Science 9/2018

Machine learning properties of binary wurtzite superlattices

Zeitschrift:
Journal of Materials Science > Ausgabe 9/2018
Autoren:
G. Pilania, X.-Y. Liu
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s10853-018-1987-z) contains supplementary material, which is available to authorized users.

Abstract

The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present contribution, we show that fast and accurate predictions of a wide range of properties of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. While the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Science 9/2018 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise