Skip to main content

2020 | OriginalPaper | Buchkapitel

Machine Learning Techniques for Wireless-Powered Ambient Backscatter Communications: Enabling Intelligent IoT Networks in 6G Era

verfasst von : Furqan Jameel, Navuday Sharma, Muhammad Awais Khan, Imran Khan, Muhammad Mahtab Alam, George Mastorakis, Constandinos X. Mavromoustakis

Erschienen in: Convergence of Artificial Intelligence and the Internet of Things

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning is a rapidly evolving paradigm that has the potential to bring intelligence and automation to low-powered devices. In parallel, there have been considerable improvements in the ambient backscatter communications due to high research interest over the last few years. The combination of these two technologies is inevitable which would eventually pave the way for intelligent Internet-of-things (IoT) in 6G wireless networks. There are several use cases for machine learning-enabled ambient backscatter networks that range from healthcare network, industrial automation, and smart farming. Besides this, it would also be helpful in enabling services like ultra-reliable and low-latency communications (uRLLC), massive machine-type communications (mMTC), and enhanced mobile broadband (eMBB). Also, machine learning techniques can help backscatter communications overcome its limiting factors. The information-driven machine learning does not require the need of a tractable scientific model as the models can be prepared to deal with channel imperfections and equipment flaws in backscatter communications. Particularly, with the use of reinforcement learning approaches, the performance of backscatter devices can be further improved. On-going examinations have likewise demonstrated that machine learning methodologies can be used to protect backscatter devices to enhance their ability to handle security and privacy vulnerabilities. These previously mentioned propositions alongside the ease-of-use of machine learning techniques inspire us to investigate the feasibility of machine learning-based methodologies for backscatter communications. To do such, we start this chapter by talking about the basics and different flavors of machine learning. This includes supervised learning, unsupervised learning, and reinforcement learning. We also shed light on the deep learning models like artificial neural networks (ANN) and deep Q-learning and discuss the hardware requirements of machine learning models. Then, we go on to describe some of the potential uses of machine learning in ambient backscatter communications. In the subsequent sections, we provide a detailed analysis of reinforcement learning for wireless-powered ambient backscatter devices and give some insightful results along with relevant discussion. In the end, we present some concluding remarks and highlight some future research directions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Rondeau, T.W., Bostian, C.W.: Artificial Intelligence in Wireless Communications. Artech House (2009) Rondeau, T.W., Bostian, C.W.: Artificial Intelligence in Wireless Communications. Artech House (2009)
3.
Zurück zum Zitat Rondeau, T.W.: Application of artificial intelligence to wireless communications. Ph.D. thesis, Virginia Tech (2007) Rondeau, T.W.: Application of artificial intelligence to wireless communications. Ph.D. thesis, Virginia Tech (2007)
4.
Zurück zum Zitat Montoya, A., Restrepo, D.C., Ovalle, D.A.: Artificial intelligence for wireless sensor networks enhancement. Smart Wirel. Sens. Netw. 73–81 (2010) Montoya, A., Restrepo, D.C., Ovalle, D.A.: Artificial intelligence for wireless sensor networks enhancement. Smart Wirel. Sens. Netw. 73–81 (2010)
5.
Zurück zum Zitat Sharma, P., Liu, H., Wang, H., Zhang, S.: Securing wireless communications of connected vehicles with artificial intelligence. In: IEEE International Symposium on Technologies for Homeland Security (HST). IEEE , pp. 1–7 (2017) Sharma, P., Liu, H., Wang, H., Zhang, S.: Securing wireless communications of connected vehicles with artificial intelligence. In: IEEE International Symposium on Technologies for Homeland Security (HST). IEEE , pp. 1–7 (2017)
6.
Zurück zum Zitat Li, R., Zhao, Z., Zhou, X., Ding, G., Chen, Y., Wang, Z., Zhang, H.: Intelligent 5G: when cellular networks meet artificial intelligence. IEEE Wirel. Commun. 24(5), 175–183 (2017) CrossRef Li, R., Zhao, Z., Zhou, X., Ding, G., Chen, Y., Wang, Z., Zhang, H.: Intelligent 5G: when cellular networks meet artificial intelligence. IEEE Wirel. Commun. 24(5), 175–183 (2017) CrossRef
7.
Zurück zum Zitat Lally, A., Fodor, P.: Natural language processing with prolog in the IBM WATSON system. Assoc. Logic Program. (ALP) Newsl Lally, A., Fodor, P.: Natural language processing with prolog in the IBM WATSON system. Assoc. Logic Program. (ALP) Newsl
8.
Zurück zum Zitat Jameel, F., Chang, Z., Huang, J., Ristaniemi, T.: Internet of autonomous vehicles: architecture, features, and socio-technological challenges. IEEE Wirel. Commun. 26(4), 21–29 (2019) Jameel, F., Chang, Z., Huang, J., Ristaniemi, T.: Internet of autonomous vehicles: architecture, features, and socio-technological challenges. IEEE Wirel. Commun. 26(4), 21–29 (2019)
9.
Zurück zum Zitat Jameel, F., Khan, F., Haider, M.A.A., Haq, A.U.: Secrecy analysis of relay assisted device-to-device systems under channel uncertainty. In: International Conference on Frontiers of Information Technology (FIT), pp. 345–349 (2017) Jameel, F., Khan, F., Haider, M.A.A., Haq, A.U.: Secrecy analysis of relay assisted device-to-device systems under channel uncertainty. In: International Conference on Frontiers of Information Technology (FIT), pp. 345–349 (2017)
10.
Zurück zum Zitat Jameel, F., Haider, M.A.A., Butt, A.A.: Physical layer security under Rayleigh/Weibull and Hoyt/Weibull fading. In: 2017 13th International Conference on Emerging Technologies (ICET), pp. 1–5 (2017) Jameel, F., Haider, M.A.A., Butt, A.A.: Physical layer security under Rayleigh/Weibull and Hoyt/Weibull fading. In: 2017 13th International Conference on Emerging Technologies (ICET), pp. 1–5 (2017)
12.
Zurück zum Zitat Jameel, F., Wyne, S., Nawaz, S.J., Chang, Z.: Propagation channels for mmwave vehicular communications: state-of-the-art and future research directions. IEEE Wirel. Commun. 26(1), 144–150 (2019) CrossRef Jameel, F., Wyne, S., Nawaz, S.J., Chang, Z.: Propagation channels for mmwave vehicular communications: state-of-the-art and future research directions. IEEE Wirel. Commun. 26(1), 144–150 (2019) CrossRef
13.
Zurück zum Zitat Jameel, F., Wyne, S., Jayakody, D.N.K., Kaddoum, G., OKennedy, R.: Wireless Social networks: a survey of recent advances, applications and challenges. IEEE Access 6, 59589–59617 (2018) Jameel, F., Wyne, S., Jayakody, D.N.K., Kaddoum, G., OKennedy, R.: Wireless Social networks: a survey of recent advances, applications and challenges. IEEE Access 6, 59589–59617 (2018)
14.
Zurück zum Zitat Jameel, F., Kumar, S., Chang, Z., Hamalainan, T., Ristaniemi, T.: Operator revenue analysis for device-to-device communications overlaying cellular network. In: IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–6 (2018) Jameel, F., Kumar, S., Chang, Z., Hamalainan, T., Ristaniemi, T.: Operator revenue analysis for device-to-device communications overlaying cellular network. In: IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–6 (2018)
15.
Zurück zum Zitat Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K.-C., Hanzo, L.: Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 24(2), 98–105 (2016) CrossRef Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K.-C., Hanzo, L.: Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 24(2), 98–105 (2016) CrossRef
16.
Zurück zum Zitat Alsheikh, M.A., Lin, S., Niyato, D., Tan, H.-P.: Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun. Surv. Tutor. 16(4), 1996–2018 (2014) CrossRef Alsheikh, M.A., Lin, S., Niyato, D., Tan, H.-P.: Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun. Surv. Tutor. 16(4), 1996–2018 (2014) CrossRef
17.
Zurück zum Zitat Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018) MathSciNetCrossRef Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018) MathSciNetCrossRef
18.
Zurück zum Zitat Wang, T., Wen, C.-K., Wang, H., Gao, F., Jiang, T., Jin, S.: Deep learning for wireless physical layer: Opportunities and challenges. China Commun. 14(11), 92–111 (2017) CrossRef Wang, T., Wen, C.-K., Wang, H., Gao, F., Jiang, T., Jin, S.: Deep learning for wireless physical layer: Opportunities and challenges. China Commun. 14(11), 92–111 (2017) CrossRef
19.
Zurück zum Zitat Wang, X., Gao, L., Mao, S., Pandey, S.: DeepFi: deep learning for indoor fingerprinting using channel state information. In: IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 1666–1671 (2015) Wang, X., Gao, L., Mao, S., Pandey, S.: DeepFi: deep learning for indoor fingerprinting using channel state information. In: IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 1666–1671 (2015)
20.
Zurück zum Zitat Wen, C.-K., Shih, W.-T., Jin, S.: Deep learning for massive MIMO CSI feedback. IEEE Wirel. Commun. Lett. 7(5), 748–751 (2018) CrossRef Wen, C.-K., Shih, W.-T., Jin, S.: Deep learning for massive MIMO CSI feedback. IEEE Wirel. Commun. Lett. 7(5), 748–751 (2018) CrossRef
21.
Zurück zum Zitat Rajendran, S., Meert, W., Giustiniano, D., Lenders, V., Pollin, S.: Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Trans. Cogn. Commun. Netw. 4(3), 433–445 (2018) CrossRef Rajendran, S., Meert, W., Giustiniano, D., Lenders, V., Pollin, S.: Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Trans. Cogn. Commun. Netw. 4(3), 433–445 (2018) CrossRef
22.
Zurück zum Zitat Li, B., Najafi, M.H., Lilja, D.J.: Using stochastic computing to reduce the hardware requirements for a restricted Boltzmann machine classifier. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ACM, pp. 36–41 (2016) Li, B., Najafi, M.H., Lilja, D.J.: Using stochastic computing to reduce the hardware requirements for a restricted Boltzmann machine classifier. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ACM, pp. 36–41 (2016)
23.
Zurück zum Zitat Sze, V., Chen, Y.-H., Emer, J., Suleiman, A., Zhang, Z.: Hardware for machine learning: challenges and opportunities. In: IEEE Custom Integrated Circuits Conference (CICC). IEEE, pp. 1–8 (2017) Sze, V., Chen, Y.-H., Emer, J., Suleiman, A., Zhang, Z.: Hardware for machine learning: challenges and opportunities. In: IEEE Custom Integrated Circuits Conference (CICC). IEEE, pp. 1–8 (2017)
24.
Zurück zum Zitat Chen, Y., Chen, T., Xu, Z., Sun, N., Temam, O.: DianNao family: energy-efficient hardware accelerators for machine learning. Commun. ACM 59(11), 105–112 (2016) CrossRef Chen, Y., Chen, T., Xu, Z., Sun, N., Temam, O.: DianNao family: energy-efficient hardware accelerators for machine learning. Commun. ACM 59(11), 105–112 (2016) CrossRef
25.
Zurück zum Zitat Lew, J., Shah, D.A., Pati, S., Cattell, S., Zhang, M., Sandhupatla, A., Ng, C., Goli, N., Sinclair, M.D., Rogers, T.G.: Analyzing machine learning workloads using a detailed GPU simulator. In: IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, pp. 151–152 (2019) Lew, J., Shah, D.A., Pati, S., Cattell, S., Zhang, M., Sandhupatla, A., Ng, C., Goli, N., Sinclair, M.D., Rogers, T.G.: Analyzing machine learning workloads using a detailed GPU simulator. In: IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, pp. 151–152 (2019)
26.
Zurück zum Zitat Choi, W, Duraisamy, K., Kim, R.G., Doppa, J.R., Pande, P.P., Marculescu, R., Marculescu, D.: Hybrid network-on-chip architectures for accelerating deep learning kernels on heterogeneous manycore platforms. In: Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems, ACM, p. 13 (2016) Choi, W, Duraisamy, K., Kim, R.G., Doppa, J.R., Pande, P.P., Marculescu, R., Marculescu, D.: Hybrid network-on-chip architectures for accelerating deep learning kernels on heterogeneous manycore platforms. In: Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems, ACM, p. 13 (2016)
27.
Zurück zum Zitat Jameel, F., Javed, M.A., Jayakody, D.N., Hassan, S.A.: On secrecy performance of industrial Internet of things. Internet Technol. Lett. 1(2), e32 (2018) CrossRef Jameel, F., Javed, M.A., Jayakody, D.N., Hassan, S.A.: On secrecy performance of industrial Internet of things. Internet Technol. Lett. 1(2), e32 (2018) CrossRef
28.
Zurück zum Zitat Jameel, F., Javed, M.A., Ngo, D.T.: Performance analysis of cooperative V2V and V2I communications under correlated fading. IEEE Trans. Intell. Trans. Syst. 1–9 (2019) Jameel, F., Javed, M.A., Ngo, D.T.: Performance analysis of cooperative V2V and V2I communications under correlated fading. IEEE Trans. Intell. Trans. Syst. 1–9 (2019)
29.
Zurück zum Zitat Assimonis, S.D., Daskalakis, S.-N., Bletsas, A.: Sensitive and efficient RF harvesting supply for batteryless backscatter sensor networks. IEEE Trans. Microw. Theory Tech. 64(4), 1327–1338 (2016) CrossRef Assimonis, S.D., Daskalakis, S.-N., Bletsas, A.: Sensitive and efficient RF harvesting supply for batteryless backscatter sensor networks. IEEE Trans. Microw. Theory Tech. 64(4), 1327–1338 (2016) CrossRef
30.
Zurück zum Zitat Jameel, F., Duan, R., Chang, Z., Liljemark, A., Ristaniemi, T., Jantti, R.: Applications of backscatter communications for healthcare networks. IEEE Netw. 33(6), 50–57 (2019) Jameel, F., Duan, R., Chang, Z., Liljemark, A., Ristaniemi, T., Jantti, R.: Applications of backscatter communications for healthcare networks. IEEE Netw. 33(6), 50–57 (2019)
31.
Zurück zum Zitat Jabeen, T., Ali, Z., Khan, W.U., Jameel, F., Khan, I., Sidhu, G.A.S., Choi, B.J.: Joint power allocation and link selection for multi-carrier buffer aided relay network. Electronics 8(6), 686 (2019) CrossRef Jabeen, T., Ali, Z., Khan, W.U., Jameel, F., Khan, I., Sidhu, G.A.S., Choi, B.J.: Joint power allocation and link selection for multi-carrier buffer aided relay network. Electronics 8(6), 686 (2019) CrossRef
32.
Zurück zum Zitat Awais, M., Raza, M., Ali, K., Ali, Z., Irfan, M., Chughtai, O., Khan, I., Kim, S., Ur Rehman, M.: An Internet of Things based bed-egress alerting paradigm using wearable sensors in elderly care environment. Sensors 19(11), 2498 (2019) Awais, M., Raza, M., Ali, K., Ali, Z., Irfan, M., Chughtai, O., Khan, I., Kim, S., Ur Rehman, M.: An Internet of Things based bed-egress alerting paradigm using wearable sensors in elderly care environment. Sensors 19(11), 2498 (2019)
33.
Zurück zum Zitat Jameel, F., Ristaniemi, T., Khan, I., Lee, B.M.: Simultaneous harvest-and-transmit ambient backscatter communications under Rayleigh fading. EURASIP J. Wirel. Commun. Netw. 2019(1), 166 (2019) CrossRef Jameel, F., Ristaniemi, T., Khan, I., Lee, B.M.: Simultaneous harvest-and-transmit ambient backscatter communications under Rayleigh fading. EURASIP J. Wirel. Commun. Netw. 2019(1), 166 (2019) CrossRef
34.
Zurück zum Zitat Lu, X., Niyato, D., Jiang, H., Kim, D.I., Xiao, Y., Han, Z.: Ambient backscatter assisted wireless powered communications. IEEE Wirel. Commun. 25(2), 170–177 (2018) CrossRef Lu, X., Niyato, D., Jiang, H., Kim, D.I., Xiao, Y., Han, Z.: Ambient backscatter assisted wireless powered communications. IEEE Wirel. Commun. 25(2), 170–177 (2018) CrossRef
35.
Zurück zum Zitat Van Huynh, N., Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I.: Ambient backscatter communications: a contemporary survey. IEEE Commun. Surv. & Tutor. 20(4), 2889–2922 (2018) CrossRef Van Huynh, N., Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I.: Ambient backscatter communications: a contemporary survey. IEEE Commun. Surv. & Tutor. 20(4), 2889–2922 (2018) CrossRef
36.
Zurück zum Zitat Min, M., Xiao, L., Chen, Y., Cheng, P., Wu, D., Zhuang, W.: Learning-based computation offloading for IoT devices with energy harvesting. IEEE Trans. Veh. Technol. 68(2), 1930–1941 (2019) CrossRef Min, M., Xiao, L., Chen, Y., Cheng, P., Wu, D., Zhuang, W.: Learning-based computation offloading for IoT devices with energy harvesting. IEEE Trans. Veh. Technol. 68(2), 1930–1941 (2019) CrossRef
37.
Zurück zum Zitat Gui, G., Huang, H., Song, Y., Sari, H.: Deep learning for an effective non-orthogonal multiple access scheme. IEEE Trans. Veh. Technol. 67(9), 8440–8450 (2018) CrossRef Gui, G., Huang, H., Song, Y., Sari, H.: Deep learning for an effective non-orthogonal multiple access scheme. IEEE Trans. Veh. Technol. 67(9), 8440–8450 (2018) CrossRef
Metadaten
Titel
Machine Learning Techniques for Wireless-Powered Ambient Backscatter Communications: Enabling Intelligent IoT Networks in 6G Era
verfasst von
Furqan Jameel
Navuday Sharma
Muhammad Awais Khan
Imran Khan
Muhammad Mahtab Alam
George Mastorakis
Constandinos X. Mavromoustakis
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-44907-0_8