Skip to main content

2019 | OriginalPaper | Buchkapitel

8. Machining Tribology

verfasst von : Tony L. Schmitz, K. Scott Smith

Erschienen in: Machining Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chapter 8 investigates the role of tribology, or the study of friction, wear, and lubrication, in machining performance. It is shown that tribology information is required to select machining parameters that minimize cost, including: (1) relationships between machining parameters, workpiece material properties, cutting forces, and the corresponding temperature field; (2) tool life, common wear features, and the dependence of machining cost on tool life; and (3) cutting fluids and their effect on tool life.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
T. Schmitz recognizes the contributions of J. Karandikar to this experimental study.
 
2
T. Schmitz recognizes the contributions of H.S. Kim to this case study.
 
Literatur
1.
Zurück zum Zitat Tlusty, G. (2000). Manufacturing processes and equipment, chapter 8: Cutting mechanics. Upper Saddle River, NJ: Prentice Hall. Tlusty, G. (2000). Manufacturing processes and equipment, chapter 8: Cutting mechanics. Upper Saddle River, NJ: Prentice Hall.
2.
Zurück zum Zitat Rubeo, M., & Schmitz, T. (2016). Milling force modeling: A comparison of two approaches. Procedia Manufacturing, 5, 90–105.CrossRef Rubeo, M., & Schmitz, T. (2016). Milling force modeling: A comparison of two approaches. Procedia Manufacturing, 5, 90–105.CrossRef
3.
Zurück zum Zitat Altintas, Y. (2000). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge, UK: Cambridge University Press. Altintas, Y. (2000). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge, UK: Cambridge University Press.
4.
Zurück zum Zitat Gunay, M., Aslan, E., Korkut, I., & Seker, U. (2004). Investigation of the effect of rake angle on main cutting force. International Journal of Machine Tools and Manufacture, 44, 953–959.CrossRef Gunay, M., Aslan, E., Korkut, I., & Seker, U. (2004). Investigation of the effect of rake angle on main cutting force. International Journal of Machine Tools and Manufacture, 44, 953–959.CrossRef
5.
Zurück zum Zitat Taylor, F. W. (1907). On the art of cutting metals. Transactions of the ASME, 28, 31–350. Taylor, F. W. (1907). On the art of cutting metals. Transactions of the ASME, 28, 31–350.
6.
Zurück zum Zitat Teti, R. (1995). A review of tool condition monitoring literature database. Annals of the CIRP, 44(2), 659–666. Teti, R. (1995). A review of tool condition monitoring literature database. Annals of the CIRP, 44(2), 659–666.
7.
Zurück zum Zitat Dimla, D. E. (2000). Sensor signals for tool-wear monitoring in metal cutting operations—A review of methods. International Journal of Machine Tools and Manufacture, 40, 1073–1098.CrossRef Dimla, D. E. (2000). Sensor signals for tool-wear monitoring in metal cutting operations—A review of methods. International Journal of Machine Tools and Manufacture, 40, 1073–1098.CrossRef
8.
Zurück zum Zitat Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 16(4), 487–546.CrossRef Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 16(4), 487–546.CrossRef
12.
Zurück zum Zitat Machado, A. R., & Wallbank, J. (1994). The effects of a high-pressure coolant jet on machining. Proceedings of the Institution of Mechanical Engineers, 208, 29–38.CrossRef Machado, A. R., & Wallbank, J. (1994). The effects of a high-pressure coolant jet on machining. Proceedings of the Institution of Mechanical Engineers, 208, 29–38.CrossRef
13.
Zurück zum Zitat Exugwu, E. O., Da Silva, R. B., Bonney, J., & Machado, A. R. (2005). Evaluation of the performance of CBN tools when turning Ti-6Al-4V alloy with high pressure coolant supplies. International Journal of Machine Tools and Manufacture, 45, 1009–1014.CrossRef Exugwu, E. O., Da Silva, R. B., Bonney, J., & Machado, A. R. (2005). Evaluation of the performance of CBN tools when turning Ti-6Al-4V alloy with high pressure coolant supplies. International Journal of Machine Tools and Manufacture, 45, 1009–1014.CrossRef
14.
Zurück zum Zitat Nandy, A. K., Gowrishankar, M. C., & Paul, S. (2009). Some studies on high-pressure cooling in turning of Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 49, 182–198.CrossRef Nandy, A. K., Gowrishankar, M. C., & Paul, S. (2009). Some studies on high-pressure cooling in turning of Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 49, 182–198.CrossRef
15.
Zurück zum Zitat Fadare, D. A., Ezugwu, E. O., & Bonney, J. (2009). Modeling of tool wear parameters in high-pressure coolant assisted turning of titanium alloy Ti-6Al-4V using artificial neural networks. The Pacific Journal of Science and Technology, 10(2), 68–76. Fadare, D. A., Ezugwu, E. O., & Bonney, J. (2009). Modeling of tool wear parameters in high-pressure coolant assisted turning of titanium alloy Ti-6Al-4V using artificial neural networks. The Pacific Journal of Science and Technology, 10(2), 68–76.
16.
Zurück zum Zitat Ezugwu, E. O., Bonney, J., Da Silva, B., & Cakir, O. (2007). Surface integrity of finished turned Ti-6Al-4V alloy with PCD tools using conventional and high pressure coolant supplies. International Journal of Machine Tools and Manufacture, 47, 884–891.CrossRef Ezugwu, E. O., Bonney, J., Da Silva, B., & Cakir, O. (2007). Surface integrity of finished turned Ti-6Al-4V alloy with PCD tools using conventional and high pressure coolant supplies. International Journal of Machine Tools and Manufacture, 47, 884–891.CrossRef
17.
Zurück zum Zitat Sharma, V., Dogra, M., & Suri, N. M. (2009). Cooling techniques for improved productivity in turning. International Journal of Machine Tools and Manufacture, 49, 435–453.CrossRef Sharma, V., Dogra, M., & Suri, N. M. (2009). Cooling techniques for improved productivity in turning. International Journal of Machine Tools and Manufacture, 49, 435–453.CrossRef
18.
Zurück zum Zitat Lopez de Lacalle, L. N., Perez-Bilbatua, J., Sanchez, J. A., Llorente, I., Gutierrez, A., & Alboniga, J. (2000). Using high pressure coolant in the drilling and turning of low machinability alloys. International Journal of Advanced Manufacturing Technology, 16, 85–91.CrossRef Lopez de Lacalle, L. N., Perez-Bilbatua, J., Sanchez, J. A., Llorente, I., Gutierrez, A., & Alboniga, J. (2000). Using high pressure coolant in the drilling and turning of low machinability alloys. International Journal of Advanced Manufacturing Technology, 16, 85–91.CrossRef
19.
Zurück zum Zitat Palanisamy, S., McDonald, S. D., & Dargusch, M. S. (2009). Effects of coolant pressure on chip formation while turning Ti6Al4V alloy. International Journal of Machine Tools and Manufacture, 49, 739–743.CrossRef Palanisamy, S., McDonald, S. D., & Dargusch, M. S. (2009). Effects of coolant pressure on chip formation while turning Ti6Al4V alloy. International Journal of Machine Tools and Manufacture, 49, 739–743.CrossRef
20.
Zurück zum Zitat Kaminski, J., & Alvelid, B. (2000). Temperature reduction in the cutting zone in water-jet assisted turning. Journal of Materials Processing Technology, 106, 68–73.CrossRef Kaminski, J., & Alvelid, B. (2000). Temperature reduction in the cutting zone in water-jet assisted turning. Journal of Materials Processing Technology, 106, 68–73.CrossRef
21.
Zurück zum Zitat Kovacevic, R., Cherukuthota, C., & Mazurkiewicz, M. (1995). High pressure waterjet cooling/lubrication to improve machining efficiency in milling. International Journal of Machine Tools and Manufacture, 35(10), 1459–1473.CrossRef Kovacevic, R., Cherukuthota, C., & Mazurkiewicz, M. (1995). High pressure waterjet cooling/lubrication to improve machining efficiency in milling. International Journal of Machine Tools and Manufacture, 35(10), 1459–1473.CrossRef
22.
Zurück zum Zitat Rahman, M., Kumar, A. S., & Choudhury, M. R. (2000). Identification of effective zones for high pressure coolant in milling. Annals of the CIRP, 49(1), 47–52.CrossRef Rahman, M., Kumar, A. S., & Choudhury, M. R. (2000). Identification of effective zones for high pressure coolant in milling. Annals of the CIRP, 49(1), 47–52.CrossRef
23.
Zurück zum Zitat Kumar, A. S., Rahman, M., & Ng, S. L. (2002). Effect of high-pressure coolant on machining performance. International Journal of Advanced Manufacturing Technology, 20, 83–91.CrossRef Kumar, A. S., Rahman, M., & Ng, S. L. (2002). Effect of high-pressure coolant on machining performance. International Journal of Advanced Manufacturing Technology, 20, 83–91.CrossRef
24.
Zurück zum Zitat Shokrani, A., Dhokia, V., & Newman, S. T. (2012). Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57, 83–101.CrossRef Shokrani, A., Dhokia, V., & Newman, S. T. (2012). Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57, 83–101.CrossRef
25.
Zurück zum Zitat Pu, Z., Outeirob, J. C., Batista, A. C., Dillon Jr., O. W., Puleo, D. A., & Jawahir, I. S. (2012). Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components. International Journal of Machine Tools and Manufacture, 56, 17–27.CrossRef Pu, Z., Outeirob, J. C., Batista, A. C., Dillon Jr., O. W., Puleo, D. A., & Jawahir, I. S. (2012). Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components. International Journal of Machine Tools and Manufacture, 56, 17–27.CrossRef
26.
Zurück zum Zitat Kaynak, Y., Karaca, H. E., Noebe, R. D., & Jawahir, I. S. (2013). Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining. Wear, 306, 51–63.CrossRef Kaynak, Y., Karaca, H. E., Noebe, R. D., & Jawahir, I. S. (2013). Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining. Wear, 306, 51–63.CrossRef
27.
Zurück zum Zitat Wang, Z. Y., & Rajurkar, K. P. (2000). Cryogenic machining of hard-to-cut materials. Wear, 239(2), 168–175.CrossRef Wang, Z. Y., & Rajurkar, K. P. (2000). Cryogenic machining of hard-to-cut materials. Wear, 239(2), 168–175.CrossRef
28.
Zurück zum Zitat Abele, E., & Schramm, B. (2008). Using PCD for machining CGI with a CO2 coolant system. Production Engineering, 2(2), 165–169.CrossRef Abele, E., & Schramm, B. (2008). Using PCD for machining CGI with a CO2 coolant system. Production Engineering, 2(2), 165–169.CrossRef
29.
Zurück zum Zitat Machai, C., & Biermann, D. (2011). Machining of β-titanium-alloy Ti-10V-2Fe-3Al under cryogenic conditions: Cooling with carbon dioxide snow. Journal of Materials Processing Technology, 211(6), 1175–1183.CrossRef Machai, C., & Biermann, D. (2011). Machining of β-titanium-alloy Ti-10V-2Fe-3Al under cryogenic conditions: Cooling with carbon dioxide snow. Journal of Materials Processing Technology, 211(6), 1175–1183.CrossRef
30.
Zurück zum Zitat Su, Y., He, N., Li, L., & Li, X. L. (2006). An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear, 261(7), 760–766.CrossRef Su, Y., He, N., Li, L., & Li, X. L. (2006). An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear, 261(7), 760–766.CrossRef
31.
Zurück zum Zitat Tyler, C., & Schmitz, T. (2014). Examining the effects of cooling/lubrication conditions on tool wear in milling Hastelloy X. Transactions of the NAMRI/SME, 42, 1–8. Tyler, C., & Schmitz, T. (2014). Examining the effects of cooling/lubrication conditions on tool wear in milling Hastelloy X. Transactions of the NAMRI/SME, 42, 1–8.
32.
Zurück zum Zitat Kayhan, M., & Budak, E. (2009). An experimental investigation of chatter effects on tool life. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(11), 1455–1463.CrossRef Kayhan, M., & Budak, E. (2009). An experimental investigation of chatter effects on tool life. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(11), 1455–1463.CrossRef
Metadaten
Titel
Machining Tribology
verfasst von
Tony L. Schmitz
K. Scott Smith
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-93707-6_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.