Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2011 | Original Article | Ausgabe 4/2011

Engineering with Computers 4/2011

Macro-grammatical evolution for nonlinear time series modeling—a case study of reservoir inflow forecasting

Zeitschrift:
Engineering with Computers > Ausgabe 4/2011
Autor:
Li Chen

Abstract

Streamflow forecasting is significantly important for planning and operating water resource systems. However, streamflow formation is a highly nonlinear, time varying, spatially distributed process and difficult to forecast. This paper proposes a nonlinear model which incorporates improved real-coded grammatical evolution (GE) with a genetic algorithm (GA) to predict the ten-day inflow of the De-Chi Reservoir in central Taiwan. The GE is a recently developed evolutionary-programming algorithm used to express complex relationships among long-term nonlinear time series. The algorithm discovers significant input variables and combines them to form mathematical equations automatically. Utilizing GA with GE optimizes an appropriate type of function and its associated coefficients. To enhance searching efficiency and genetic diversity during GA optimization, the macro-evolutionary algorithm (MA) is processed as a selection operator. The results using an example of theoretical nonlinear time series problems indicate that the proposed GEMA yields an efficient optimal solution. GEMA has the advantages of its ability to learn relationships hidden in data and express them automatically in a mathematical manner. When applied to a real world case study, the fittest equation generated through GEMA used only a single input variable in a reasonable nonlinear form. The predicting accuracies of GEMA were better than those of the traditional linear regression (LR) model and as good as those of the back-propagation neural network (BPNN). In addition, the predicting of ten-day reservoir inflows reveals the effectives of GEMA, and standardization is beneficial to model for seasonal time series.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2011

Engineering with Computers 4/2011 Zur Ausgabe