Skip to main content
Erschienen in: Automatic Control and Computer Sciences 5/2019

01.09.2019

MAD-based Estimation of the Noise Level in the Contourlet Domain

verfasst von: Abdelhak Bouhali, Daoud Berkani

Erschienen in: Automatic Control and Computer Sciences | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Noise-level estimation remains one of the most critical issues related to the contourlet-based approaches. In this paper, an investigation of an effective solution is directed from any redundant contourlet expansion. This is going to be addressed for the first time in that domain. In this proposition, the noise level is estimated as the median absolute value (MAD) of the finest multi-scale coefficients, calibrated by three correction parameters. This is done according to some visual classification of the natural images. The present estimator provides a better compromise between the image and the contourlet expansion nature, which makes the estimation results more accurate for a wide range of natural images, when compared to the best state-of-the-art methods. Therefore, it is extensively recommended for most of the contourlet-based image applications (Thresholding, filtering, etc.) thanks to its accuracy, simplicity, and rapidity.
Literatur
1.
Zurück zum Zitat Yoon, B.J. and Vaidyanathan, P.P., Wavelet based denoising by customized thresholding, ICASSP, 2004, pp. II-925–II-928. Yoon, B.J. and Vaidyanathan, P.P., Wavelet based denoising by customized thresholding, ICASSP, 2004, pp. II-925–II-928.
2.
Zurück zum Zitat Fathi, A. and Nilchi, A.R.N., Efficient image denoising method based on a new adaptive wavelet packet thresholding function, IEEE Trans. Image Process., 2012, vol. 21, no. 9, pp. 3981–3990.MathSciNetCrossRef Fathi, A. and Nilchi, A.R.N., Efficient image denoising method based on a new adaptive wavelet packet thresholding function, IEEE Trans. Image Process., 2012, vol. 21, no. 9, pp. 3981–3990.MathSciNetCrossRef
3.
Zurück zum Zitat Arivazhagan, S., et al., A new hybrid image restoration method based on fusion of spatial and transform domain methods, Int. Conf. on Recent Adv. Comput. and Software, 2012, pp. 48–53. Arivazhagan, S., et al., A new hybrid image restoration method based on fusion of spatial and transform domain methods, Int. Conf. on Recent Adv. Comput. and Software, 2012, pp. 48–53.
4.
Zurück zum Zitat Donoho, D.L. and Johnstone, I.M., Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc., 1995, vol. 90, no. 432, pp. 1200–1224.MathSciNetCrossRef Donoho, D.L. and Johnstone, I.M., Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc., 1995, vol. 90, no. 432, pp. 1200–1224.MathSciNetCrossRef
5.
Zurück zum Zitat De Stefano, A., White, P., and Collis, W.B., Training methods for image noise level estimation on wavelet components, EURASIP J. Appl. Signal Process., 2004, vol. 16, pp. 2400–2407.MathSciNetMATH De Stefano, A., White, P., and Collis, W.B., Training methods for image noise level estimation on wavelet components, EURASIP J. Appl. Signal Process., 2004, vol. 16, pp. 2400–2407.MathSciNetMATH
6.
Zurück zum Zitat Liu, C., et al., Noise estimation from a single image, Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2006, pp. 901–908. Liu, C., et al., Noise estimation from a single image, Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2006, pp. 901–908.
7.
Zurück zum Zitat Liu, C., et al., Automatic estimation and removal of noise from a single image, IEEE Trans. Pattern Anal. Mach. Intell., 2008, vol. 30, no. 2, pp. 299–314.CrossRef Liu, C., et al., Automatic estimation and removal of noise from a single image, IEEE Trans. Pattern Anal. Mach. Intell., 2008, vol. 30, no. 2, pp. 299–314.CrossRef
8.
Zurück zum Zitat Liu, X., et al., Noise level estimation using weak textured patches of a single noisy image, 19th IEEE Intern. Conf. Image Process, 2012, pp. 665–668. Liu, X., et al., Noise level estimation using weak textured patches of a single noisy image, 19th IEEE Intern. Conf. Image Process, 2012, pp. 665–668.
9.
Zurück zum Zitat Liu, X., et al., Single-image noise level estimation for blind denoising, IEEE T Image Process., 2013, vol. 22, no. 12, pp. 5226–5237.CrossRef Liu, X., et al., Single-image noise level estimation for blind denoising, IEEE T Image Process., 2013, vol. 22, no. 12, pp. 5226–5237.CrossRef
10.
Zurück zum Zitat Pyatikh, S., et al., Image noise level estimation by principal component analysis, IEEE Trans. Image Process., 2013, vol. 22, no. 2, pp. 687–699.MathSciNetCrossRef Pyatikh, S., et al., Image noise level estimation by principal component analysis, IEEE Trans. Image Process., 2013, vol. 22, no. 2, pp. 687–699.MathSciNetCrossRef
11.
Zurück zum Zitat Liu, L. and Lin, W., Adaptive White Gaussian noise level estimation in SVD domain for images, IEEE Trans. Image Process., 2013, vol. 22, no. 3, pp. 872–883.MathSciNetCrossRef Liu, L. and Lin, W., Adaptive White Gaussian noise level estimation in SVD domain for images, IEEE Trans. Image Process., 2013, vol. 22, no. 3, pp. 872–883.MathSciNetCrossRef
12.
Zurück zum Zitat Chen, G., et al., An efficient statistical method for image noise level estimation, Proc. IEEE Intern. Conf. Computer Vision, 2015, pp. 477–485. Chen, G., et al., An efficient statistical method for image noise level estimation, Proc. IEEE Intern. Conf. Computer Vision, 2015, pp. 477–485.
13.
Zurück zum Zitat Das, A.K. and Chandle, J.O., Accurate noise level estimation through singular values and linear regression, 2nd IEEE Int. Conf. on Eng. & Tech. (ICETECH), 2016, pp. 1132–1135. Das, A.K. and Chandle, J.O., Accurate noise level estimation through singular values and linear regression, 2nd IEEE Int. Conf. on Eng. & Tech. (ICETECH), 2016, pp. 1132–1135.
14.
Zurück zum Zitat Khmag, A., et al., Natural image noise level estimation based on local statistics for blind noise reduction, Visual Comput., 2018, vol. 34, no. 4, pp. 575–587.CrossRef Khmag, A., et al., Natural image noise level estimation based on local statistics for blind noise reduction, Visual Comput., 2018, vol. 34, no. 4, pp. 575–587.CrossRef
15.
Zurück zum Zitat Kingsbury, N.G., The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters, IEEE Digit. Sig. Proc. Workshop, Bryce Canyon, 1998, pp. 120–131. Kingsbury, N.G., The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters, IEEE Digit. Sig. Proc. Workshop, Bryce Canyon, 1998, pp. 120–131.
16.
Zurück zum Zitat Candes, E.J. and Donoho, D.L., Curvelets, multi-resolution representation, and scaling laws, International Symposium on Optical Science and Technology, International Society for Optics and Photonics, 2000, pp. 1–12. Candes, E.J. and Donoho, D.L., Curvelets, multi-resolution representation, and scaling laws, International Symposium on Optical Science and Technology, International Society for Optics and Photonics, 2000, pp. 1–12.
17.
Zurück zum Zitat Do, M.N. and Vetterli, M., The contourlet transform an efficient directional multi resolution image representation, IEEE Trans. Image Process., 2005, vol. 14, no. 12, pp. 2091–2106.CrossRef Do, M.N. and Vetterli, M., The contourlet transform an efficient directional multi resolution image representation, IEEE Trans. Image Process., 2005, vol. 14, no. 12, pp. 2091–2106.CrossRef
18.
Zurück zum Zitat Do, M.N., Directional multi-resolution image representation, Ph.D. Dissertation, Lausanne: Swiss Federal Institute of Technology, 2001. Do, M.N., Directional multi-resolution image representation, Ph.D. Dissertation, Lausanne: Swiss Federal Institute of Technology, 2001.
19.
Zurück zum Zitat Lu, Y. and Do, M.N., CRISP-contourlet: A critically sampled directional multi-resolution image representation, SPIE Conf. Wavelet Apps. Signal Image Process, San Diego, 2003. Lu, Y. and Do, M.N., CRISP-contourlet: A critically sampled directional multi-resolution image representation, SPIE Conf. Wavelet Apps. Signal Image Process, San Diego, 2003.
20.
Zurück zum Zitat Lu, Y. and Do, M.N., A new contourlet transform with sharp frequency localization, Proc. of the International Conference on Image Processing (ICIP '06), Atlanta, 2006, pp. 1629–1632. Lu, Y. and Do, M.N., A new contourlet transform with sharp frequency localization, Proc. of the International Conference on Image Processing (ICIP '06), Atlanta, 2006, pp. 1629–1632.
21.
Zurück zum Zitat Da Cunha, A.L., et al., The nonsubsampled contourlet transform: Theory, design, and applications, IEEE Trans. Image Process., 2006, vol. 15, no. 10, pp. 3089–3101.CrossRef Da Cunha, A.L., et al., The nonsubsampled contourlet transform: Theory, design, and applications, IEEE Trans. Image Process., 2006, vol. 15, no. 10, pp. 3089–3101.CrossRef
22.
Zurück zum Zitat Chui, M., et al., Image denoising method with adaptive Bayes threshold in nonsubsampled contourlet domain, AASRI Procedia, 2012, vol. 1, pp. 512–518.CrossRef Chui, M., et al., Image denoising method with adaptive Bayes threshold in nonsubsampled contourlet domain, AASRI Procedia, 2012, vol. 1, pp. 512–518.CrossRef
23.
Zurück zum Zitat Li, X.F., et al., Intensity image denoising for laser active imaging system using non-subsampled contourlet transform and SURE approach, Optik, 2012, vol. 123, no. 9, pp. 808–813.CrossRef Li, X.F., et al., Intensity image denoising for laser active imaging system using non-subsampled contourlet transform and SURE approach, Optik, 2012, vol. 123, no. 9, pp. 808–813.CrossRef
25.
Zurück zum Zitat Wang, J. and Zhou, Y., Image denoising based on the symmetric normal inverse Gaussian model and non-subsampled contourlet transform, IET Image Proc., 2012, vol. 6, no. 8, pp. 1136–1147.MathSciNetCrossRef Wang, J. and Zhou, Y., Image denoising based on the symmetric normal inverse Gaussian model and non-subsampled contourlet transform, IET Image Proc., 2012, vol. 6, no. 8, pp. 1136–1147.MathSciNetCrossRef
26.
Zurück zum Zitat Liu, J., et al., NSCT remote sensing image denoising based on threshold of free distributed FDR, Procedia Eng., 2011, pp. 616–620.CrossRef Liu, J., et al., NSCT remote sensing image denoising based on threshold of free distributed FDR, Procedia Eng., 2011, pp. 616–620.CrossRef
27.
Zurück zum Zitat Zhao, Q., et al., Mixed image denoising method of non-local means and adaptive Bayesian threshold estimation in NSCT domain, 3rd IEEE Int. Conf. on Comp. Sci. & Inf. Tech, 2010, pp. 636–639. Zhao, Q., et al., Mixed image denoising method of non-local means and adaptive Bayesian threshold estimation in NSCT domain, 3rd IEEE Int. Conf. on Comp. Sci. & Inf. Tech, 2010, pp. 636–639.
28.
Zurück zum Zitat Zhou, Z., et al., Contourlet-based image denoising algorithm using adaptive windows, 4th IEEE Int. Conf. on Ind. Elec. & Apps, 2009, pp. 3654–3657. Zhou, Z., et al., Contourlet-based image denoising algorithm using adaptive windows, 4th IEEE Int. Conf. on Ind. Elec. & Apps, 2009, pp. 3654–3657.
30.
Zurück zum Zitat Qinli, Z., et al., A novel method of medical image enhancement based on wavelet decomposition, Autom. Cont. Comp. Sci., 2017, vol. 51, no. 4, pp. 263–269.CrossRef Qinli, Z., et al., A novel method of medical image enhancement based on wavelet decomposition, Autom. Cont. Comp. Sci., 2017, vol. 51, no. 4, pp. 263–269.CrossRef
31.
Zurück zum Zitat Burt, P.J. and Adelson, E.H., The Laplacian pyramid as a compact image code, IEEE Trans. Commun., 1983, vol. 31, no. 4, pp. 532–540.CrossRef Burt, P.J. and Adelson, E.H., The Laplacian pyramid as a compact image code, IEEE Trans. Commun., 1983, vol. 31, no. 4, pp. 532–540.CrossRef
32.
Zurück zum Zitat Bamberger, R.H. and Smith, M.J., T, A filter bank for the directional decomposition of images: Theory and design, IEEE Signal Process., 1992, vol. 40, no. 10, pp. 882–893.CrossRef Bamberger, R.H. and Smith, M.J., T, A filter bank for the directional decomposition of images: Theory and design, IEEE Signal Process., 1992, vol. 40, no. 10, pp. 882–893.CrossRef
33.
Zurück zum Zitat Vaidyanathan, P.P., Multirate Systems and Filter Banks, New Jersey: Prentice Hall, 1993.MATH Vaidyanathan, P.P., Multirate Systems and Filter Banks, New Jersey: Prentice Hall, 1993.MATH
34.
Zurück zum Zitat Shensa, M.J., The discrete wavelet transform: Wedding the à trous and Mallat algorithms, IEEE Trans. Signal Process., 1992, vol. 40, no. 10, pp. 2464–2482.CrossRef Shensa, M.J., The discrete wavelet transform: Wedding the à trous and Mallat algorithms, IEEE Trans. Signal Process., 1992, vol. 40, no. 10, pp. 2464–2482.CrossRef
35.
Zurück zum Zitat A Matlab Contourlet Toolbox. https://www.ifp.uiuc.edu/~minhdo/software. A Matlab Contourlet Toolbox. https://​www.​ifp.​uiuc.​edu/​~minhdo/​software.​
36.
Zurück zum Zitat Donoho, D.L. and Johnstone, I.M., Ideal spatial adaptation by wavelet shrinkage, Biometrika, 1994, vol. 83, no. 3, pp. 425–455.MathSciNetCrossRef Donoho, D.L. and Johnstone, I.M., Ideal spatial adaptation by wavelet shrinkage, Biometrika, 1994, vol. 83, no. 3, pp. 425–455.MathSciNetCrossRef
37.
Zurück zum Zitat Johnstone, I.M. and Silverman, B.W., Wavelet threshold estimators for data with correlated noise, J. R. Stat. Soc. B, 1997, vol. 59, no. 2, pp. 319–351.MathSciNetCrossRef Johnstone, I.M. and Silverman, B.W., Wavelet threshold estimators for data with correlated noise, J. R. Stat. Soc. B, 1997, vol. 59, no. 2, pp. 319–351.MathSciNetCrossRef
38.
Zurück zum Zitat Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, 2008, 3rd ed.MATH Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, 2008, 3rd ed.MATH
39.
Zurück zum Zitat Rousseau, P.J. and Croux, C., Alternatives to the median absolute deviation, J. Am. Stat. Assoc., 1993, vol. 88, no. 424, pp. 1273–1283.MathSciNetCrossRef Rousseau, P.J. and Croux, C., Alternatives to the median absolute deviation, J. Am. Stat. Assoc., 1993, vol. 88, no. 424, pp. 1273–1283.MathSciNetCrossRef
Metadaten
Titel
MAD-based Estimation of the Noise Level in the Contourlet Domain
verfasst von
Abdelhak Bouhali
Daoud Berkani
Publikationsdatum
01.09.2019
Verlag
Pleiades Publishing
Erschienen in
Automatic Control and Computer Sciences / Ausgabe 5/2019
Print ISSN: 0146-4116
Elektronische ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411619050055

Weitere Artikel der Ausgabe 5/2019

Automatic Control and Computer Sciences 5/2019 Zur Ausgabe

Neuer Inhalt