Skip to main content
Erschienen in: Microsystem Technologies 10/2017

12.05.2017 | Technical Paper

Magnetic field assisted bonding technology for released micro actuator and mirror surface

verfasst von: Yuan Xue, Siyuan He

Erschienen in: Microsystem Technologies | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A magnetic field pulling-force assisted bonding technology is reported, which is used to bond a mirror plate with a released microactuator using adhesive. This bonding technology is not sensitive to the micromachining process, i.e., any process for microactuator fabrication containing the ferromagnetic structure layer can be used and bonded with a high surface quality mirror plate after released. The conventional wafer bonding technology bonds unreleased actuator with a mirror plate but it limits to the process compatible with the wafer bonding with a releasing step suitable for wafer bonding. Consequently not all processes (such as those mature and commercially available, and those being able to generate large displacement) can be used to fabricate micromirrors. The bonding technology proposed in this paper applies non-touching magnetic field pulling-force, instead of conventional compression mechanical force through touching, to bring the microactutor and a mirror plate in contact for bonding such as to avoid: (1) any plastic deformation or damage to the released micro actuator; and (2) the risk of sticking the actuator moving part to the substrate due to the adhesive squeezed out from the bonding surfaces. The bonding method is introduced and the critical parameters of the bonding method, i.e., distance between the magnet to the actuator is determined through simulations. A bonding mechanism is built and two different designs are bonded. Bonding results are measured, which verifies the bonding method. The bonding is characterized to have a strength of withstanding vibration for a few hours in frequency 20–200 Hz with 2–5 g acceleration and surviving in the temperature of −30 to 80 °C. After bonding a mirror plate with 15.6 m of the curvature radius and 2 nm of the roughness, the bonded micromirror is tested to have a quasi-static displacement of 120 μm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ataman Ç, Lani S, Noell W, de Rooij N (2013) A dual-axis pointing mirror with moving-magnet actuation. J Micromechanics Microengineering 23(2):25002CrossRef Ataman Ç, Lani S, Noell W, de Rooij N (2013) A dual-axis pointing mirror with moving-magnet actuation. J Micromechanics Microengineering 23(2):25002CrossRef
Zurück zum Zitat Bai Y, Yeow JTW, Wilson BC (2010) Design, fabrication, and characterization of a 2-D SOI MEMS micromirror with sidewall electrodes for confocal MACROscope imaging, vol 19, no 3. Ph.D thesis, University of Waterloo, pp 619–631 Bai Y, Yeow JTW, Wilson BC (2010) Design, fabrication, and characterization of a 2-D SOI MEMS micromirror with sidewall electrodes for confocal MACROscope imaging, vol 19, no 3. Ph.D thesis, University of Waterloo, pp 619–631
Zurück zum Zitat Bai Y, Pallapa M, Chen A, Constantinou P, Damaskinos S, Wilson BC, Yeow JTW (2012) A 2D MEMS mirror with sidewall electrodes applied for confocal MACROscope imaging. J Microscopy 245(2):210–220CrossRef Bai Y, Pallapa M, Chen A, Constantinou P, Damaskinos S, Wilson BC, Yeow JTW (2012) A 2D MEMS mirror with sidewall electrodes applied for confocal MACROscope imaging. J Microscopy 245(2):210–220CrossRef
Zurück zum Zitat Chao F, He S, Chong J, Ben Mrad R, Feng L (2011) Development of a micromirror based laser vector scanning automotive HUD. In: 2011 IEEE International Conference on Mechatronics and Automation ICMA, pp 75–79 Chao F, He S, Chong J, Ben Mrad R, Feng L (2011) Development of a micromirror based laser vector scanning automotive HUD. In: 2011 IEEE International Conference on Mechatronics and Automation ICMA, pp 75–79
Zurück zum Zitat Cho HJ, Ahn CH (2002) Electroplated permanent magnet arrays. Structure 11(1):78–84 Cho HJ, Ahn CH (2002) Electroplated permanent magnet arrays. Structure 11(1):78–84
Zurück zum Zitat Cho I-J, Yoon E (2009) A low-voltage three-axis electromagnetically actuated micromirror for fine alignment among optical devices. J Micromechanics Microengineering 19(8):85007CrossRef Cho I-J, Yoon E (2009) A low-voltage three-axis electromagnetically actuated micromirror for fine alignment among optical devices. J Micromechanics Microengineering 19(8):85007CrossRef
Zurück zum Zitat Chong J, He S, Ben R (2012) Mrad, “Development of a vector display system based on a surface-micromachined micromirror”. IEEE Trans Ind Electron 59(12):4863–4870CrossRef Chong J, He S, Ben R (2012) Mrad, “Development of a vector display system based on a surface-micromachined micromirror”. IEEE Trans Ind Electron 59(12):4863–4870CrossRef
Zurück zum Zitat Cowen A, Dudley B, Hill E, Walters M, Wood R (2009) MetalMUMPs design handbook a MUMPs ® process, pp 1–39 Cowen A, Dudley B, Hill E, Walters M, Wood R (2009) MetalMUMPs design handbook a MUMPs ® process, pp 1–39
Zurück zum Zitat Debray A, Ludwig A, Bourouina T, Asaoka A, Tiercelin N, Reyne G, Oki T, Quandt E, Muro H, Fujita H (2004) Application of a multilayered magnetostrictive film to a micromachined 2-D optical scanner. J Microelectromechanical Syst 13(2):264–271CrossRef Debray A, Ludwig A, Bourouina T, Asaoka A, Tiercelin N, Reyne G, Oki T, Quandt E, Muro H, Fujita H (2004) Application of a multilayered magnetostrictive film to a micromachined 2-D optical scanner. J Microelectromechanical Syst 13(2):264–271CrossRef
Zurück zum Zitat Fan C, He S (2015) A two-row interdigitating-finger repulsive-torque electrostatic actuator and its application to micromirror vector display. J Microelectromechanical Syst 24(6):2049–2061MathSciNetCrossRef Fan C, He S (2015) A two-row interdigitating-finger repulsive-torque electrostatic actuator and its application to micromirror vector display. J Microelectromechanical Syst 24(6):2049–2061MathSciNetCrossRef
Zurück zum Zitat He S, Chang JS (2009) Experimental verification of an out-of-plane repulsive-force electrostatic actuator using a macroscopic mechanism. Microsyst Technol 15(3):453–461CrossRef He S, Chang JS (2009) Experimental verification of an out-of-plane repulsive-force electrostatic actuator using a macroscopic mechanism. Microsyst Technol 15(3):453–461CrossRef
Zurück zum Zitat He S, Mrad RB (2003) Development of a novel translation micromirror for adaptive optics. Proc SPIE 5264:154–161CrossRef He S, Mrad RB (2003) Development of a novel translation micromirror for adaptive optics. Proc SPIE 5264:154–161CrossRef
Zurück zum Zitat He S, Mrad RB (2005) Large-stroke microelectrostatic actuators for vertical translation of micromirrors used in adaptive optics. IEEE Trans Ind Electron 52(4):974–983CrossRef He S, Mrad RB (2005) Large-stroke microelectrostatic actuators for vertical translation of micromirrors used in adaptive optics. IEEE Trans Ind Electron 52(4):974–983CrossRef
Zurück zum Zitat He S, Mrad RB (2008) Design, modeling, and demonstration of a MEMS repulsive-force out-of-plane electrostatic micro actuator. J Microelectromechanical Syst 17(3):532–547CrossRef He S, Mrad RB (2008) Design, modeling, and demonstration of a MEMS repulsive-force out-of-plane electrostatic micro actuator. J Microelectromechanical Syst 17(3):532–547CrossRef
Zurück zum Zitat He S, Mrad RB, Chang JS (2010) Development of a high-performance microelectrostatic repulsive-force rotation actuator. J Microelectromechanical Syst 19(3):561–569CrossRef He S, Mrad RB, Chang JS (2010) Development of a high-performance microelectrostatic repulsive-force rotation actuator. J Microelectromechanical Syst 19(3):561–569CrossRef
Zurück zum Zitat Ho J, Haesoo K, Seung J, Lee K, Hyeon C, Jae J, Park H (2016) Electromagnetically actuated biaxial scanning micromirror fabricated with silicon on glass wafer. Microsyst Technol 1–11. doi:10.1007/s00542-016-2949-5 Ho J, Haesoo K, Seung J, Lee K, Hyeon C, Jae J, Park H (2016) Electromagnetically actuated biaxial scanning micromirror fabricated with silicon on glass wafer. Microsyst Technol 1–11. doi:10.​1007/​s00542-016-2949-5
Zurück zum Zitat Jeong JW, Kim S, Solgaard O (2012) Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing. J Microelectromechanical Syst 21(2):308–315CrossRef Jeong JW, Kim S, Solgaard O (2012) Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing. J Microelectromechanical Syst 21(2):308–315CrossRef
Zurück zum Zitat Leahy S, Lai Y (2016) An hourglass design with electrokinetic sampling and electrothermal actuation for micro biosensors. Sens Actuators B Chem 223:123–130CrossRef Leahy S, Lai Y (2016) An hourglass design with electrokinetic sampling and electrothermal actuation for micro biosensors. Sens Actuators B Chem 223:123–130CrossRef
Zurück zum Zitat Liu B, Li D, Yang X, Li X (2006) Design and fabrication of a micro electromagnetic actuator. In: Proceedings of 1st IEEE International Conference on Nano Micro Engineered and Molecular Systems 1st IEEE-NEMS, pp 353–356 Liu B, Li D, Yang X, Li X (2006) Design and fabrication of a micro electromagnetic actuator. In: Proceedings of 1st IEEE International Conference on Nano Micro Engineered and Molecular Systems 1st IEEE-NEMS, pp 353–356
Zurück zum Zitat Loctite 312 (2004) Technical Data Sheet, Loctite [Online] Loctite 312 (2004) Technical Data Sheet, Loctite [Online]
Zurück zum Zitat Loctite 736 (2004) Technical Data Sheet, Loctite [Online] Loctite 736 (2004) Technical Data Sheet, Loctite [Online]
Zurück zum Zitat Ra H, Piyawattanametha W, Taguchi Y, Lee D, Mandella MJ, Solgaard O (2007) Two-dimensional MEMS scanner for dual-axes confocal microscopy. J Microelectromechanical Syst 16(4):969–976CrossRef Ra H, Piyawattanametha W, Taguchi Y, Lee D, Mandella MJ, Solgaard O (2007) Two-dimensional MEMS scanner for dual-axes confocal microscopy. J Microelectromechanical Syst 16(4):969–976CrossRef
Zurück zum Zitat Sadat SH, Kamiya D, Bagheri S, Horie M (2008) 2 Degree-of-freedom spiral micromirror manipulator. J Adv Mech Des Syst Manuf 2(2):265–270CrossRef Sadat SH, Kamiya D, Bagheri S, Horie M (2008) 2 Degree-of-freedom spiral micromirror manipulator. J Adv Mech Des Syst Manuf 2(2):265–270CrossRef
Zurück zum Zitat Sadat SH, Kamiya D, Horie M (2009) Large-deflection spiral-shaped micromirror actuator. J Microelectromechanical Syst 18(6):1357–1364CrossRef Sadat SH, Kamiya D, Horie M (2009) Large-deflection spiral-shaped micromirror actuator. J Microelectromechanical Syst 18(6):1357–1364CrossRef
Zurück zum Zitat Sadler DJ, Liakopoulos TM, Ahn CH (2000) Universal electromagnetic microactuator using magnetic interconnection concepts. J Microelectromechanical Syst 9(4):460–468CrossRef Sadler DJ, Liakopoulos TM, Ahn CH (2000) Universal electromagnetic microactuator using magnetic interconnection concepts. J Microelectromechanical Syst 9(4):460–468CrossRef
Zurück zum Zitat Solgaard O, Godil AA, Howe RT, Lee LP, Peter YA, Zappe H (2014) Optical MEMS: from micromirrors to complex systems. J Microelectromechanical Syst 23(3):517–538CrossRef Solgaard O, Godil AA, Howe RT, Lee LP, Peter YA, Zappe H (2014) Optical MEMS: from micromirrors to complex systems. J Microelectromechanical Syst 23(3):517–538CrossRef
Zurück zum Zitat Streque J, Talbi A, Pernod P, Preobrazhensky V (2012a) Pulse-driven magnetostatic micro-actuator array based on ultrasoft elastomeric membranes for active surface applications. J. Micromechanics Microengineering 22:95020CrossRef Streque J, Talbi A, Pernod P, Preobrazhensky V (2012a) Pulse-driven magnetostatic micro-actuator array based on ultrasoft elastomeric membranes for active surface applications. J. Micromechanics Microengineering 22:95020CrossRef
Zurück zum Zitat Streque J, Talbi A, Bonnerot C, Pernod P, Preobrazhensky V (2012) Magnetostatic micro-actuator based on ultrasoft elastomeric membrane and copper—permalloy electrodeposited structures. In: 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems, pp 1157–1160 Streque J, Talbi A, Bonnerot C, Pernod P, Preobrazhensky V (2012) Magnetostatic micro-actuator based on ultrasoft elastomeric membrane and copper—permalloy electrodeposited structures. In: 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems, pp 1157–1160
Zurück zum Zitat Tang T, Fang W (2011) Magnetostatic torsional actuator with embedded nickel structures for the improvement of driving force and wobble. J Micromechanics Microengineering 21:095007CrossRef Tang T, Fang W (2011) Magnetostatic torsional actuator with embedded nickel structures for the improvement of driving force and wobble. J Micromechanics Microengineering 21:095007CrossRef
Zurück zum Zitat Van Kessel PF, Hornbeck LJ, Meier RE, Douglass MR (1998) A MEMS-based projection display. Proc IEEE 86(8):1687–1704CrossRef Van Kessel PF, Hornbeck LJ, Meier RE, Douglass MR (1998) A MEMS-based projection display. Proc IEEE 86(8):1687–1704CrossRef
Zurück zum Zitat Wang Y, Gokdel YD, Triesault N, Wang L (2014) Magnetic-actuated stainless steel scanner for two-photon hyperspectral fluorescence microscope. J Microelectromechanical Syst 23(5):1208–1218CrossRef Wang Y, Gokdel YD, Triesault N, Wang L (2014) Magnetic-actuated stainless steel scanner for two-photon hyperspectral fluorescence microscope. J Microelectromechanical Syst 23(5):1208–1218CrossRef
Zurück zum Zitat Weber N, Hertkorn D, Zappe H, Seifert A (2012a) Polymer/silicon hard magnetic micromirrors. J Microelectromechanical Syst 21(5):1098–1106CrossRef Weber N, Hertkorn D, Zappe H, Seifert A (2012a) Polymer/silicon hard magnetic micromirrors. J Microelectromechanical Syst 21(5):1098–1106CrossRef
Zurück zum Zitat Weber N, Zappe H, Seifert A (2012b) An all-nickel magnetostatic MEMS scanner. J Micromechanics Microengineering 22(12):125008CrossRef Weber N, Zappe H, Seifert A (2012b) An all-nickel magnetostatic MEMS scanner. J Micromechanics Microengineering 22(12):125008CrossRef
Zurück zum Zitat Xue Y, He S (2017) A translation micromirror with large quasi-static displacement andhigh surface quality. J Micromechanics Microengineering 27(1):015009CrossRef Xue Y, He S (2017) A translation micromirror with large quasi-static displacement andhigh surface quality. J Micromechanics Microengineering 27(1):015009CrossRef
Zurück zum Zitat Yang H-A, Fang W (2006) A novel coil-less lorentz force 2D scanning mirror using eddy current. In: 19th IEEE International Conference on Micro Electro Mechanical Systems, vol 16, no 3, pp 511–520 Yang H-A, Fang W (2006) A novel coil-less lorentz force 2D scanning mirror using eddy current. In: 19th IEEE International Conference on Micro Electro Mechanical Systems, vol 16, no 3, pp 511–520
Zurück zum Zitat Yang Z, Jeong B, Vakakis A, Kim S (2015) A tip-tilt-piston micromirror with an elastomeric universal joint fabricated via micromasonry. J Microelectromechanical Syst 24(2):262–264CrossRef Yang Z, Jeong B, Vakakis A, Kim S (2015) A tip-tilt-piston micromirror with an elastomeric universal joint fabricated via micromasonry. J Microelectromechanical Syst 24(2):262–264CrossRef
Zurück zum Zitat Zhou L, Kahn JM, Pister KSJ (2006) Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process. J Microelectromechanical Syst 15(1):24–32CrossRef Zhou L, Kahn JM, Pister KSJ (2006) Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process. J Microelectromechanical Syst 15(1):24–32CrossRef
Zurück zum Zitat Zine-El-Abidine I, Okoniewski M (2007) A tunable radio frequency MEMS inductor using MetalMUMPs. J Micromechanics Microengineering 17(11):2280–2287CrossRef Zine-El-Abidine I, Okoniewski M (2007) A tunable radio frequency MEMS inductor using MetalMUMPs. J Micromechanics Microengineering 17(11):2280–2287CrossRef
Zurück zum Zitat Zuo H, He S (2016) FPCB micromirror-based laser projection availability indicator. IEEE Trans Ind Electron 63(5):3009–3018CrossRef Zuo H, He S (2016) FPCB micromirror-based laser projection availability indicator. IEEE Trans Ind Electron 63(5):3009–3018CrossRef
Metadaten
Titel
Magnetic field assisted bonding technology for released micro actuator and mirror surface
verfasst von
Yuan Xue
Siyuan He
Publikationsdatum
12.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3432-7

Weitere Artikel der Ausgabe 10/2017

Microsystem Technologies 10/2017 Zur Ausgabe

Neuer Inhalt