Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 9/2020

24.06.2020

Magnetic-Field-Induced Liquid–Solid Interface Transformation and Its Effect on Microsegregation in Directionally Solidified Ni-Cr Alloy

verfasst von: Shengya He, Chuanjun Li, Zhaojing Yuan, Weidong Xuan, Jiang Wang, Zhongming Ren

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The transformation of liquid–solid interface induced by the steady magnetic field (SMF) in the directionally solidified Ni-10 wt pct Cr alloy was studied experimentally. At the moderate pulling rate (50 μm s−1), it could be observed that the interface morphology gradually transformed from planar to cellular shape with increasing the SMF intensity (0 T, 3 T, 6 T). However, the cellular interface at the high pulling rate (100 μm s−1) was not influenced by the SMF. 3D numerical simulations suggested that the transformation of interface morphology originated from the thermoelectric magnetic convection near the wavelike interface at the early stage of solidification. From the composition measurement, it was found that the formation of microsegregation at the moderate pulling rate was associated with the interface morphology. Under the 3 T SMF, the liquid–solid interface remained planar and the microsegregation level increased in comparison with that without the SMF. Under the 6 T SMF, the liquid–solid interface became cellular and the microsegregation level was reduced. The factors affecting microsegregation were evaluated. The effective partition coefficient was estimated based on composition data. It was revealed that the effective partition coefficient increased with the 6 T SMF due to the thermoelectric magnetic and magnetic damping effects within the cellular structure. Additionally, the solid diffusivity was measured using the diffusion couple technique. It was found that the interdiffusion coefficient of Cr decreased with increasing the SMF intensity. The modified Brody model was used to predict the microsegregation behavior in the SMF. The predicted results were in agreement with experimental observation. It could be concluded that the decrease in solid diffusivity enhanced the formation of microsegregation for the planar interface, whereas the increase in effective partition coefficient in the SMF was beneficial for alleviating the extent of microsegregation for the cellular interface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Darolia: Int. Mater. Rev., 2019, vol. 64, pp. 355-80. R. Darolia: Int. Mater. Rev., 2019, vol. 64, pp. 355-80.
2.
Zurück zum Zitat F. Pyczak, B. Devrient, F. C. Neuner and H. Mughrabi: Acta Mater., 2005, vol. 53, pp. 3879-91. F. Pyczak, B. Devrient, F. C. Neuner and H. Mughrabi: Acta Mater., 2005, vol. 53, pp. 3879-91.
3.
Zurück zum Zitat S. L. Shang, C. L. Zacherl, H. Z. Fang, Y. Wang, Y. Du and Z. K. Liu: J. Phys.: Condens. Matter, 2012, vol. 24, p. 505403. S. L. Shang, C. L. Zacherl, H. Z. Fang, Y. Wang, Y. Du and Z. K. Liu: J. Phys.: Condens. Matter, 2012, vol. 24, p. 505403.
4.
Zurück zum Zitat B. Seiser, R. Drautz and D. G. Pettifor: Acta Mater., 2011, vol. 59, pp. 749-63. B. Seiser, R. Drautz and D. G. Pettifor: Acta Mater., 2011, vol. 59, pp. 749-63.
5.
Zurück zum Zitat N. Zhou, D. C. Lv, H. L. Zhang, D. McAllister, F. Zhang, M. J. Mills and Y. Wang: Acta Mater., 2014, vol. 65, pp. 270-86. N. Zhou, D. C. Lv, H. L. Zhang, D. McAllister, F. Zhang, M. J. Mills and Y. Wang: Acta Mater., 2014, vol. 65, pp. 270-86.
6.
Zurück zum Zitat G. X. Wang, V. Prasad and E. F. Matthys: Mater. Sci. Eng. A, 1997, vol. 225, pp. 47-58. G. X. Wang, V. Prasad and E. F. Matthys: Mater. Sci. Eng. A, 1997, vol. 225, pp. 47-58.
7.
Zurück zum Zitat G. Kasperovich, T. Volkmann, L. Ratke and D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1183–91. G. Kasperovich, T. Volkmann, L. Ratke and D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1183–91.
8.
Zurück zum Zitat M.S.A. Karunaratne, D.C. Cox, P. Carter and R.C. Reed: Superalloys, 2000, vol. 20, pp. 263-72. M.S.A. Karunaratne, D.C. Cox, P. Carter and R.C. Reed: Superalloys, 2000, vol. 20, pp. 263-72.
9.
Zurück zum Zitat S. N. Samaras and G. N. Haidemenopoulos: J. Mater. Process. Technol., 2007, vol. 194, pp. 63-73. S. N. Samaras and G. N. Haidemenopoulos: J. Mater. Process. Technol., 2007, vol. 194, pp. 63-73.
10.
Zurück zum Zitat P. Rudolph and K. Kakimoto: MRS Bull., 2009, vol. 34, pp. 251-58. P. Rudolph and K. Kakimoto: MRS Bull., 2009, vol. 34, pp. 251-58.
11.
Zurück zum Zitat S.Y. He, C.J. Li, T.J. Zhan, W.D. Xuan, J. Wang, Z.M. Ren (2020) Acta Metall. Sin. 33:267–74 S.Y. He, C.J. Li, T.J. Zhan, W.D. Xuan, J. Wang, Z.M. Ren (2020) Acta Metall. Sin. 33:267–74
12.
Zurück zum Zitat D. Chen, H. Zhang, H. Jiang and J. Cui: Materialwiss. Werkstofftech., 2011, vol. 42, pp. 500-05. D. Chen, H. Zhang, H. Jiang and J. Cui: Materialwiss. Werkstofftech., 2011, vol. 42, pp. 500-05.
13.
Zurück zum Zitat W. V. Youdelis and R. C. Dorwar: Can. J. Phys., 1966, vol. 44, pp. 139-50. W. V. Youdelis and R. C. Dorwar: Can. J. Phys., 1966, vol. 44, pp. 139-50.
14.
Zurück zum Zitat X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi and N. Mangelinck-Noel: Acta Mater., 2014, vol. 64, pp. 367-81. X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi and N. Mangelinck-Noel: Acta Mater., 2014, vol. 64, pp. 367-81.
15.
Zurück zum Zitat D. Du, Y. Fautrelle, Z. Ren, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 833-40. D. Du, Y. Fautrelle, Z. Ren, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 833-40.
16.
Zurück zum Zitat Z. Shen, B. Zhou, Y. Zhong, L. Dong, H. Wang, L. Fan, T. Zheng, C. Li, W. Ren, W. Xuan and Z. Ren: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3373-82. Z. Shen, B. Zhou, Y. Zhong, L. Dong, H. Wang, L. Fan, T. Zheng, C. Li, W. Ren, W. Xuan and Z. Ren: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3373-82.
17.
Zurück zum Zitat X. Li, A. Gagnoud, Z. M. Ren, Y. Fautrelle and F. Debray: J. Mater. Res., 2013, vol. 28, pp. 2810-18. X. Li, A. Gagnoud, Z. M. Ren, Y. Fautrelle and F. Debray: J. Mater. Res., 2013, vol. 28, pp. 2810-18.
18.
Zurück zum Zitat X. Li, Y. Fautrelle, Z. M. Ren, A. Gagnoud, R. Moreau, Y. D. Zhang and C. Esling: Acta Mater., 2009, vol. 57, pp. 1689-701. X. Li, Y. Fautrelle, Z. M. Ren, A. Gagnoud, R. Moreau, Y. D. Zhang and C. Esling: Acta Mater., 2009, vol. 57, pp. 1689-701.
19.
Zurück zum Zitat L. Hou, Y. C. Dai, Y. Fautrelle, Z. B. Li, Z. M. Ren, C. Esling and X. Li: J. Alloys Compd., 2018, vol. 758, pp. 54-61. L. Hou, Y. C. Dai, Y. Fautrelle, Z. B. Li, Z. M. Ren, C. Esling and X. Li: J. Alloys Compd., 2018, vol. 758, pp. 54-61.
20.
Zurück zum Zitat W. L. Ren, L. Lu, G. Z. Yuan, W. D. Xuan, Y. B. Zhong, J. B. Yu and Z. M. Ren: Mater. Lett., 2013, vol. 100, pp. 223-26. W. L. Ren, L. Lu, G. Z. Yuan, W. D. Xuan, Y. B. Zhong, J. B. Yu and Z. M. Ren: Mater. Lett., 2013, vol. 100, pp. 223-26.
21.
Zurück zum Zitat W. Ren, C. Niu, B. Ding, Y. Zhong, J. Yu, Z. Ren, W. Liu, L. Ren and P. K. Liaw: Sci. Rep., 2018, vol. 8, pp. 1-17. W. Ren, C. Niu, B. Ding, Y. Zhong, J. Yu, Z. Ren, W. Liu, L. Ren and P. K. Liaw: Sci. Rep., 2018, vol. 8, pp. 1-17.
22.
Zurück zum Zitat J. Yu, D. Du, Z. Ren, Y. Fautrelle, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 337-42. J. Yu, D. Du, Z. Ren, Y. Fautrelle, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 337-42.
23.
Zurück zum Zitat X. Li, Y. Fautrelle and Z. M. Ren: Acta Mater., 2007, vol. 55, pp. 3803-13. X. Li, Y. Fautrelle and Z. M. Ren: Acta Mater., 2007, vol. 55, pp. 3803-13.
24.
Zurück zum Zitat S. He, C. Li, R. Guo, W. Xuan, J. Wang and Z. Ren: J. Alloys Compd., 2019, vol. 800, pp. 41-49. S. He, C. Li, R. Guo, W. Xuan, J. Wang and Z. Ren: J. Alloys Compd., 2019, vol. 800, pp. 41-49.
25.
Zurück zum Zitat H.D. Brody: Solute redistribution in dendritic solidification. Massachusetts Institute of Technology, the USA, 1965, pp. 20–55. H.D. Brody: Solute redistribution in dendritic solidification. Massachusetts Institute of Technology, the USA, 1965, pp. 20–55.
26.
Zurück zum Zitat H. Engelhardt and M. Rettenmayr: Acta Mater., 2015, vol. 95, pp. 212-15. H. Engelhardt and M. Rettenmayr: Acta Mater., 2015, vol. 95, pp. 212-15.
27.
Zurück zum Zitat M. N. Gungor: Metall. Trans. A, 1989, vol. 20, pp. 2529–33. M. N. Gungor: Metall. Trans. A, 1989, vol. 20, pp. 2529–33.
28.
Zurück zum Zitat R. Smith: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3258-79. R. Smith: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3258-79.
29.
Zurück zum Zitat Z. J. Yuan, Z. M. Ren, C. J. Li, Q. Xiao, Q. L. Wang, Y. M. Dai and H. Wang: Mater. Lett., 2013, vol. 108, pp. 340-42. Z. J. Yuan, Z. M. Ren, C. J. Li, Q. Xiao, Q. L. Wang, Y. M. Dai and H. Wang: Mater. Lett., 2013, vol. 108, pp. 340-42.
30.
Zurück zum Zitat X. Li, Y. Fautrelle and Z. Ren: Acta Mater., 2007, vol. 55, pp. 1377-86. X. Li, Y. Fautrelle and Z. Ren: Acta Mater., 2007, vol. 55, pp. 1377-86.
31.
Zurück zum Zitat J. Wang, Y. Fautrelle, Z. M. Ren, H. Nguyen-Thi, G. S. A. Jaoude, G. Reinhart, N. Mangelinck-Noël, X. Li and I. Kaldre: Appl. Phys. Lett., 2014, vol. 104, p. 121916. J. Wang, Y. Fautrelle, Z. M. Ren, H. Nguyen-Thi, G. S. A. Jaoude, G. Reinhart, N. Mangelinck-Noël, X. Li and I. Kaldre: Appl. Phys. Lett., 2014, vol. 104, p. 121916.
32.
Zurück zum Zitat F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova and Y. Fautrelle: Magnetohydrodynamics, 2015, vol. 51, pp. 45-55. F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova and Y. Fautrelle: Magnetohydrodynamics, 2015, vol. 51, pp. 45-55.
33.
Zurück zum Zitat M. Yousuf, P. C. Sahu and K. G. Rajan: Phys. Rev. B, 1986, vol. 34, pp. 8086-100. M. Yousuf, P. C. Sahu and K. G. Rajan: Phys. Rev. B, 1986, vol. 34, pp. 8086-100.
34.
Zurück zum Zitat T. P. Wang, C. D. Starr and N. Brown: Acta Metall., 1966, vol. 14, pp. 649-57. T. P. Wang, C. D. Starr and N. Brown: Acta Metall., 1966, vol. 14, pp. 649-57.
35.
Zurück zum Zitat V. G. Postovalov, E. P. Romanov, V. P. Kondrat’ev and V. I. Kononenko: High Temp., 2003, vol. 41, pp. 762-70. V. G. Postovalov, E. P. Romanov, V. P. Kondrat’ev and V. I. Kononenko: High Temp., 2003, vol. 41, pp. 762-70.
36.
Zurück zum Zitat K. Mukai, F. Xiao, K. Nogi and Z. Li: Mater. Trans., 2004, vol. 45, pp. 2357-63. K. Mukai, F. Xiao, K. Nogi and Z. Li: Mater. Trans., 2004, vol. 45, pp. 2357-63.
37.
Zurück zum Zitat J. A. Burton, R. C. Prim and W. P. Slichter: J. Chem. Phys., 1953, vol. 21, pp. 1987-91. J. A. Burton, R. C. Prim and W. P. Slichter: J. Chem. Phys., 1953, vol. 21, pp. 1987-91.
38.
Zurück zum Zitat T. W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12, pp. 965–71. T. W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12, pp. 965–71.
39.
Zurück zum Zitat D. H. Kirkwood: Mater. Sci. Eng., 1984, vol. 65, pp. 101-09. D. H. Kirkwood: Mater. Sci. Eng., 1984, vol. 65, pp. 101-09.
40.
Zurück zum Zitat V. R. Voller: J. Cryst. Growth., 2001, vol. 226, pp. 562-68. V. R. Voller: J. Cryst. Growth., 2001, vol. 226, pp. 562-68.
41.
Zurück zum Zitat W. V. Youdelis, D. R. Colton and J. Cahoon: Can. J. Phys., 1964, vol. 42, pp. 2217-37. W. V. Youdelis, D. R. Colton and J. Cahoon: Can. J. Phys., 1964, vol. 42, pp. 2217-37.
42.
Zurück zum Zitat S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida and A. Chiba: J. Mater. Sci., 2005, vol. 40, pp. 3191-98. S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida and A. Chiba: J. Mater. Sci., 2005, vol. 40, pp. 3191-98.
43.
Zurück zum Zitat X. Ren, G. Q. Chen, W. L. Zhou, C. W. Wu and J. S. Zhang: J. Alloys Compd., 2009, vol. 472, pp. 525-29. X. Ren, G. Q. Chen, W. L. Zhou, C. W. Wu and J. S. Zhang: J. Alloys Compd., 2009, vol. 472, pp. 525-29.
44.
Zurück zum Zitat J. M. Philibert: Atom movements-Diffusion and mass transport in solids. EDP Sciences, Les Ulis, France, 2012, pp. 33-61. J. M. Philibert: Atom movements-Diffusion and mass transport in solids. EDP Sciences, Les Ulis, France, 2012, pp. 33-61.
45.
Zurück zum Zitat Y. Aoki, S. Hayashi and H. Komatsu: J. Cryst. Growth., 1992, vol. 123, pp. 313-16. Y. Aoki, S. Hayashi and H. Komatsu: J. Cryst. Growth., 1992, vol. 123, pp. 313-16.
46.
Zurück zum Zitat F. Xiao, R. Yang, L. Fang and C. Zhang: Mater. Sci. Eng. B, 2006, vol. 132, pp. 193-96. F. Xiao, R. Yang, L. Fang and C. Zhang: Mater. Sci. Eng. B, 2006, vol. 132, pp. 193-96.
Metadaten
Titel
Magnetic-Field-Induced Liquid–Solid Interface Transformation and Its Effect on Microsegregation in Directionally Solidified Ni-Cr Alloy
verfasst von
Shengya He
Chuanjun Li
Zhaojing Yuan
Weidong Xuan
Jiang Wang
Zhongming Ren
Publikationsdatum
24.06.2020
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 9/2020
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-05887-x

Weitere Artikel der Ausgabe 9/2020

Metallurgical and Materials Transactions A 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.