Skip to main content
Erschienen in: Physics of Metals and Metallography 13/2019

01.12.2019

Magnetic Materials for Thin Film Based Magnetoimpedance Biosensing

verfasst von: G. V. Kurlyandskaya, S. V. Shcherbinin, N. A. Buznikov, A. A. Chlenova, A. V. Svalov

Erschienen in: Physics of Metals and Metallography | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the fundamental characteristics of a magnetic field detector is sensitivity to the external magnetic field. Of all the known magnetic effects, the giant magnetoimpedance (MI) has the highest sensitivity with respect to the external magnetic field. Here, we describe our experience in designing, fabrication, experimental and theoretical characterization of [FeNi(50 nm)/Ti(6 nm)]6/Cu(500 nm)/[Ti(50 nm)/FeNi(6 nm)]6 multilayered structures for biometric detector. The designed device operates at room temperature, with a maximum sensitivity of the order of 0.4 Ohm/Oe for the total impedance and its real part and 0.1 Ohm/Oe for the imaginary part of the total impedance. An automatic system based on a ZVA-67 (Rohde & Schwarz) vector network analyzer was built for one-scan microwave absorption studies of both magnetoimpedance and ferromagnetic resonance of multilayered sensitive elements. Measurements were made with the coplanar line type holder in the increasing and decreasing fields. The obtained experimental and theoretical results for MI range were in a satisfactory agreement with each other. They could be useful for optimization of the MI multilayered elements for practical applications, including applications in different types of magnetic biosensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. J. Darton, A. Ionescu, and J. Llandro (Eds.), Magnetic Nanoparticles in Biosensing and Medicine (Cambridge University Press, Cambridge, UK, 2019). N. J. Darton, A. Ionescu, and J. Llandro (Eds.), Magnetic Nanoparticles in Biosensing and Medicine (Cambridge University Press, Cambridge, UK, 2019).
2.
Zurück zum Zitat Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 36, R167–R181 (2003).CrossRef Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 36, R167–R181 (2003).CrossRef
3.
Zurück zum Zitat G. V. Kurlyandskaya and V. I. Levit, “Advanced materials for drug delivery and biosensors based on magnetic label detection,” Mater. Sci. Eng., C 27, 495–503 (2007).CrossRef G. V. Kurlyandskaya and V. I. Levit, “Advanced materials for drug delivery and biosensors based on magnetic label detection,” Mater. Sci. Eng., C 27, 495–503 (2007).CrossRef
4.
Zurück zum Zitat C. Ruan, K. Zeng, O. K. Varghese, and C. A. Grimes, “Magnetoelastic immunosensors: Amplified mass immunosorbent assay for detection of Escherichia coli O157:H7,” Anal. Chem. 75, 6494–6498 (2003).CrossRef C. Ruan, K. Zeng, O. K. Varghese, and C. A. Grimes, “Magnetoelastic immunosensors: Amplified mass immunosorbent assay for detection of Escherichia coli O157:H7,” Anal. Chem. 75, 6494–6498 (2003).CrossRef
5.
Zurück zum Zitat G. V. Kurlyandskaya and V. F. Miyar, “Surface modified amorphous ribbon based magnetoimpedance biosensor,” Biosens. Bioelectron 22, 2341–2345 (2007).CrossRef G. V. Kurlyandskaya and V. F. Miyar, “Surface modified amorphous ribbon based magnetoimpedance biosensor,” Biosens. Bioelectron 22, 2341–2345 (2007).CrossRef
6.
Zurück zum Zitat V. E. Makhotkin, B. P. Shurukhin, V. A. Lopatin, P. Y. Marchukov, and Y. K. Levin, “Magnetic field sensors based on amorphous ribbons,” Sens. Act. A 759, 759–762 (1991).CrossRef V. E. Makhotkin, B. P. Shurukhin, V. A. Lopatin, P. Y. Marchukov, and Y. K. Levin, “Magnetic field sensors based on amorphous ribbons,” Sens. Act. A 759, 759–762 (1991).CrossRef
7.
Zurück zum Zitat A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997). A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997).
8.
Zurück zum Zitat K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, “Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls,” Sens. Act. A 91, 85–90 (2001).CrossRef K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, “Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls,” Sens. Act. A 91, 85–90 (2001).CrossRef
9.
Zurück zum Zitat R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,”Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,”Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef
10.
Zurück zum Zitat T. Uchiyama, S. Nakayama, K. Mohri, and K. Bushida, “Biomagneticfield detection using very highsensitivity magneto-impedance sensors for medical applications,” Phys. Status Solidi 206, 639–643 (2009).CrossRef T. Uchiyama, S. Nakayama, K. Mohri, and K. Bushida, “Biomagneticfield detection using very highsensitivity magneto-impedance sensors for medical applications,” Phys. Status Solidi 206, 639–643 (2009).CrossRef
11.
Zurück zum Zitat N. A. Buznikov, A. P. Safronov, I. Orue, E. V. Golubeva, V. N. Lepalovskij, A. V. Svalov, A. A. Chlenova, and G. V. Kurlyandskaya, “Modelling of magnetoimpedance responce of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection,” Biosens. Bioelectron. 117, 366–372 (2018).CrossRef N. A. Buznikov, A. P. Safronov, I. Orue, E. V. Golubeva, V. N. Lepalovskij, A. V. Svalov, A. A. Chlenova, and G. V. Kurlyandskaya, “Modelling of magnetoimpedance responce of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection,” Biosens. Bioelectron. 117, 366–372 (2018).CrossRef
12.
Zurück zum Zitat Y. Sugita, H. Fujiwara, and T. Sato, “Critical thickness and perpendicular anisotropy of evaporated permalloy films with stripe domains,” Appl. Phys. Lett. 10, 229–231 (1967).CrossRef Y. Sugita, H. Fujiwara, and T. Sato, “Critical thickness and perpendicular anisotropy of evaporated permalloy films with stripe domains,” Appl. Phys. Lett. 10, 229–231 (1967).CrossRef
13.
Zurück zum Zitat A. V. Svalov, G. V. Kurlyandskaya, H. Hammer, P. A. Savin, and O. I. Tutynina, “Modification of the “Transcritical” state in Ni75Fe16Cu5Mo4 films produced by rf sputtering,” Tech. Phys. 49, 868–871 (2004).CrossRef A. V. Svalov, G. V. Kurlyandskaya, H. Hammer, P. A. Savin, and O. I. Tutynina, “Modification of the “Transcritical” state in Ni75Fe16Cu5Mo4 films produced by rf sputtering,” Tech. Phys. 49, 868–871 (2004).CrossRef
14.
Zurück zum Zitat G. V. Kurlyandskaya, L. Elbaile, F. Alves, B. Ahamada, R. Barrué, A. V. Svalov, and V. O. Vas’kovskiy, “Domain structure and magnetization process of a giant magnetoimpedance geometry FeNi/Cu/FeNi(Cu)FeNi/Cu/FeNi sensitive element,” J. Phys.: Condens. Matter 16, 6561–6568 (2004). G. V. Kurlyandskaya, L. Elbaile, F. Alves, B. Ahamada, R. Barrué, A. V. Svalov, and V. O. Vas’kovskiy, “Domain structure and magnetization process of a giant magnetoimpedance geometry FeNi/Cu/FeNi(Cu)FeNi/Cu/FeNi sensitive element,” J. Phys.: Condens. Matter 16, 6561–6568 (2004).
15.
Zurück zum Zitat M. A. Correa, F. Bohn, C. Chesman, R. B. da Silva, A. D. C. Viegas, and R. L. Sommer, “Tailoring the magnetoimpedance effect of NiFe/Ag multilayer,” J. Phys. D: Appl. Phys. 107,43, 295004 (2010).CrossRef M. A. Correa, F. Bohn, C. Chesman, R. B. da Silva, A. D. C. Viegas, and R. L. Sommer, “Tailoring the magnetoimpedance effect of NiFe/Ag multilayer,” J. Phys. D: Appl. Phys. 107,43, 295004 (2010).CrossRef
16.
Zurück zum Zitat G. V. Kurlyandskaya, A. V. Svalov, E. Fernández, A. García-Arribas, and J. M. Barandiarán, “FeNi-based magnetic layered nanostructures: Magnetic properties and giant magnetoimpedance,” J. Appl. Phys. 107, 09C502 (2010).CrossRef G. V. Kurlyandskaya, A. V. Svalov, E. Fernández, A. García-Arribas, and J. M. Barandiarán, “FeNi-based magnetic layered nanostructures: Magnetic properties and giant magnetoimpedance,” J. Appl. Phys. 107, 09C502 (2010).CrossRef
17.
Zurück zum Zitat N. A. Buznikov and G. V. Kurlyandskaya, “Magnetoimpedance in symmetric and non-symmetric nanostructured multilayers: A theoretical study,” Sensors 19, 1761 (2019).CrossRef N. A. Buznikov and G. V. Kurlyandskaya, “Magnetoimpedance in symmetric and non-symmetric nanostructured multilayers: A theoretical study,” Sensors 19, 1761 (2019).CrossRef
18.
Zurück zum Zitat J. M. González, A. García-Arribas, S. V. Shcherbinin, V. N. Lepalovskij, J. M. Collantes, and G. V. Kurlyandskaya, “Broadband ferromagnetic resonance measurements in thin-film structures for magnetoimpedance sensors,” Measurement 126, 215–222 (2018).CrossRef J. M. González, A. García-Arribas, S. V. Shcherbinin, V. N. Lepalovskij, J. M. Collantes, and G. V. Kurlyandskaya, “Broadband ferromagnetic resonance measurements in thin-film structures for magnetoimpedance sensors,” Measurement 126, 215–222 (2018).CrossRef
19.
Zurück zum Zitat V. O. Vas’kovskii, P. A. Savin, S. O. Volchkov, V. N. Lepalovskii, D. A. Bukreev, and A. A. Buchkevich, “Nanostructuring effects in soft magnetic films and film elements with magnetic impedance,” Tech. Phys. 58, 105–110 (2013).CrossRef V. O. Vas’kovskii, P. A. Savin, S. O. Volchkov, V. N. Lepalovskii, D. A. Bukreev, and A. A. Buchkevich, “Nanostructuring effects in soft magnetic films and film elements with magnetic impedance,” Tech. Phys. 58, 105–110 (2013).CrossRef
20.
Zurück zum Zitat P. R. Kern, O. E. da Silva, J, V. de Siqueira, R. D. Della Pace, J. N. Rigue, and M. Carara, “A study of the thickness dependence of static and dynamic magnetic properties of Ni81Fe19 thin films,” J. Magn. Magn. Mater. 419, 456–463 (2016).CrossRef P. R. Kern, O. E. da Silva, J, V. de Siqueira, R. D. Della Pace, J. N. Rigue, and M. Carara, “A study of the thickness dependence of static and dynamic magnetic properties of Ni81Fe19 thin films,” J. Magn. Magn. Mater. 419, 456–463 (2016).CrossRef
21.
Zurück zum Zitat Ramesh Garg, Analytical and Computational Methods in Electromagnetics (Artech House, Boston, MA, 2008). Ramesh Garg, Analytical and Computational Methods in Electromagnetics (Artech House, Boston, MA, 2008).
22.
Zurück zum Zitat D. Ménard, M. Britel, P. Ciureanu, A. Yelon, V. P. Paramonov, A. S. Antonov, P. Rudkowski, and J. O. Ström-Olsen, “High frequency impedance spectra of soft amorphous fibers,” J. Appl. Phys. 81, 4032–4034 (1997).CrossRef D. Ménard, M. Britel, P. Ciureanu, A. Yelon, V. P. Paramonov, A. S. Antonov, P. Rudkowski, and J. O. Ström-Olsen, “High frequency impedance spectra of soft amorphous fibers,” J. Appl. Phys. 81, 4032–4034 (1997).CrossRef
23.
Zurück zum Zitat S. V. Shcherbinin, S. O. Volchkov, A. V. Svalov, and G. V. Kurlyandskaya, “Microwave absorption of electromagnetic radiation and FeNi-based multilayered structures designed for aplications,” Mater., Methods, Technol. 11, 138–150 (2017). S. V. Shcherbinin, S. O. Volchkov, A. V. Svalov, and G. V. Kurlyandskaya, “Microwave absorption of electromagnetic radiation and FeNi-based multilayered structures designed for aplications,” Mater., Methods, Technol. 11, 138–150 (2017).
24.
Zurück zum Zitat G. V. Kurlyandskaya, R. El Kammouni, S. O. Volchkov, S. V. Shcherbinin, and A. Larrañaga, “Magnetoimpedance sensitive elements based on CuBr/FeCoNi electroplated wires in single and double wire configurations,” IEEE Trans. Magn. 53, 2000415 (2017).CrossRef G. V. Kurlyandskaya, R. El Kammouni, S. O. Volchkov, S. V. Shcherbinin, and A. Larrañaga, “Magnetoimpedance sensitive elements based on CuBr/FeCoNi electroplated wires in single and double wire configurations,” IEEE Trans. Magn. 53, 2000415 (2017).CrossRef
25.
Zurück zum Zitat L. V. Panina, K. Mohri, T. Ushiyama, M. Noda, and K. Bushida, “Giant magneto-impedance in Co-rich amorphous wires and films,” IEEE Trans. Magn. 31, 1249–1260 (1995).CrossRef L. V. Panina, K. Mohri, T. Ushiyama, M. Noda, and K. Bushida, “Giant magneto-impedance in Co-rich amorphous wires and films,” IEEE Trans. Magn. 31, 1249–1260 (1995).CrossRef
26.
Zurück zum Zitat S. O. Volchkov, E. Fernandez, A. Garcíia-Arribas, J. M. Barandiaran, V. N. Lepalovskij, and G. V. Kurlyan-dskaya, “Magnetic properties and giant magnetoimpedance of FeNi-based nanostructured multilayers with variable thickness of the central Cu lead,” IEEE Trans. Magn. 47, 3328–3331 (2011).CrossRef S. O. Volchkov, E. Fernandez, A. Garcíia-Arribas, J. M. Barandiaran, V. N. Lepalovskij, and G. V. Kurlyan-dskaya, “Magnetic properties and giant magnetoimpedance of FeNi-based nanostructured multilayers with variable thickness of the central Cu lead,” IEEE Trans. Magn. 47, 3328–3331 (2011).CrossRef
27.
Zurück zum Zitat R. S. Beach, N. Smith, C. L. Platt, F. Jeffers, and A. E. Berkowitz, “Magneto impedance effect in NiFe plated wire,” Appl. Phys. Lett. 68, 2753–2755 (1996).CrossRef R. S. Beach, N. Smith, C. L. Platt, F. Jeffers, and A. E. Berkowitz, “Magneto impedance effect in NiFe plated wire,” Appl. Phys. Lett. 68, 2753–2755 (1996).CrossRef
28.
Zurück zum Zitat G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovskiy, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).CrossRef G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovskiy, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).CrossRef
29.
Zurück zum Zitat A. V. Svalov, E. Fernandez, A. Garcia-Arribas, J. Alonso, M. L. Fdez-Gubieda, and G. V. Kurlyandskaya, “FeNi-based magnetoimpedance multilayers: Tayloring of the softness by magnetic spacers,” Appl. Phys. Lett. 100, 162410 (2012).CrossRef A. V. Svalov, E. Fernandez, A. Garcia-Arribas, J. Alonso, M. L. Fdez-Gubieda, and G. V. Kurlyandskaya, “FeNi-based magnetoimpedance multilayers: Tayloring of the softness by magnetic spacers,” Appl. Phys. Lett. 100, 162410 (2012).CrossRef
30.
Zurück zum Zitat D. de Cos, J. M. Barandiaran, A. García-Arribas, V. O. Vas’kovskiy, and G. V. Kurlyandskaya, “Longitudinal and transverse magnetoimpedance in FeNi/Cu/FeNi multilayers with longitudinal and transverse anisotropy,” IEEE Trans. Magn. 44, 3863–3866 (2008).CrossRef D. de Cos, J. M. Barandiaran, A. García-Arribas, V. O. Vas’kovskiy, and G. V. Kurlyandskaya, “Longitudinal and transverse magnetoimpedance in FeNi/Cu/FeNi multilayers with longitudinal and transverse anisotropy,” IEEE Trans. Magn. 44, 3863–3866 (2008).CrossRef
31.
Zurück zum Zitat D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, and R. J. Colton, “A biosensor based on magnetoresistance technology,” Biosens. Bioelectron. 13, 731–739 (1998).CrossRef D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, and R. J. Colton, “A biosensor based on magnetoresistance technology,” Biosens. Bioelectron. 13, 731–739 (1998).CrossRef
32.
Zurück zum Zitat J. J. Beato-Lopez, J. I. Pérez-Landazábal, and C. Gómez-Polo, “Magnetic nanoparticle detection method employing non-linear magnetoimpedance effects,” J. Appl. Phys. 121, 163901 (2017).CrossRef J. J. Beato-Lopez, J. I. Pérez-Landazábal, and C. Gómez-Polo, “Magnetic nanoparticle detection method employing non-linear magnetoimpedance effects,” J. Appl. Phys. 121, 163901 (2017).CrossRef
33.
Zurück zum Zitat A. Amirabadizadeh, Z. Lotfollahi, and A. Zelati, “Giant magnetoimpedance effect of Co68.15Fe4.35Si12.5B15 amorphous wire in the presence of magnetite ferrofluid,” J. Magn. Magn. Mater. 415, 102–105 (2016).CrossRef A. Amirabadizadeh, Z. Lotfollahi, and A. Zelati, “Giant magnetoimpedance effect of Co68.15Fe4.35Si12.5B15 amorphous wire in the presence of magnetite ferrofluid,” J. Magn. Magn. Mater. 415, 102–105 (2016).CrossRef
34.
Zurück zum Zitat J. H. Grossman and S. E. McNeil, “Nanotechnology in cancer medicine,” Phys. Today 65, 38–42 (2012).CrossRef J. H. Grossman and S. E. McNeil, “Nanotechnology in cancer medicine,” Phys. Today 65, 38–42 (2012).CrossRef
35.
Zurück zum Zitat S. A. M. Khawja, E. Ficiara, F. A. Ruffinatti, I. Stura, M. Argenziano, O. Abollino, R. Cavalli, C. Guiot, and F. D’Agata, “Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system,” Materials 12(3), 465 (2019).CrossRef S. A. M. Khawja, E. Ficiara, F. A. Ruffinatti, I. Stura, M. Argenziano, O. Abollino, R. Cavalli, C. Guiot, and F. D’Agata, “Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system,” Materials 12(3), 465 (2019).CrossRef
36.
Zurück zum Zitat Yu. A. Kotov, “The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders,” Nanotechn. Russ. 4, 415–424 (2009).CrossRef Yu. A. Kotov, “The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders,” Nanotechn. Russ. 4, 415–424 (2009).CrossRef
37.
Zurück zum Zitat I. V. Byzov, A. A. Mysik, A. S. Konev, S. I. Novikov, A. Ye. Yermakov, M. A. Uimin, A. S. Minin, and V. S. Gaviko, “Synthesis, magnetic properties,” Phys. Met. Metallogr. 120, 254–259 (2019).CrossRef I. V. Byzov, A. A. Mysik, A. S. Konev, S. I. Novikov, A. Ye. Yermakov, M. A. Uimin, A. S. Minin, and V. S. Gaviko, “Synthesis, magnetic properties,” Phys. Met. Metallogr. 120, 254–259 (2019).CrossRef
38.
Zurück zum Zitat I. V. Beketov, A. P. Safronov, A. I. Medvedev, J. Alonso, G. V. Kurlyandskaya, and S. M. Bhagat, “Iron oxide nanoparticles fabricated by electric explosion of wire: Focus on magnetic nanofluids,” AIP Adv. 2, 022154 (2012).CrossRef I. V. Beketov, A. P. Safronov, A. I. Medvedev, J. Alonso, G. V. Kurlyandskaya, and S. M. Bhagat, “Iron oxide nanoparticles fabricated by electric explosion of wire: Focus on magnetic nanofluids,” AIP Adv. 2, 022154 (2012).CrossRef
39.
Zurück zum Zitat V. V. Osipov, V. V. Platonov, M. A. Uimin, and A. V. Podkin, “Laser synthesis of magnetic iron oxide nanopowders,” Tech. Phys. 57, 543–549 (2012).CrossRef V. V. Osipov, V. V. Platonov, M. A. Uimin, and A. V. Podkin, “Laser synthesis of magnetic iron oxide nanopowders,” Tech. Phys. 57, 543–549 (2012).CrossRef
40.
Zurück zum Zitat I. P. Novoselova, A. P. Safronov, O. M. Samatov, I. V. Beketov, A. I. Medvedev, and G. V. Kurlyandskaya, “Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications,” J. Magn. Magn. Mater. 415, 35–38 (2016).CrossRef I. P. Novoselova, A. P. Safronov, O. M. Samatov, I. V. Beketov, A. I. Medvedev, and G. V. Kurlyandskaya, “Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications,” J. Magn. Magn. Mater. 415, 35–38 (2016).CrossRef
41.
Zurück zum Zitat F. Spizzo, P. Sgarbossa, E. Sieni, A. Semenzato, F. Dughiero, M. Forzan, R. Bertani, and L. Del Bianco, “Synthesis of ferrofluids made of iron oxide nanoflowers: Interplay between carrier fluid and magnetic properties,” Nanomaterials 7, 373 (2017).CrossRef F. Spizzo, P. Sgarbossa, E. Sieni, A. Semenzato, F. Dughiero, M. Forzan, R. Bertani, and L. Del Bianco, “Synthesis of ferrofluids made of iron oxide nanoflowers: Interplay between carrier fluid and magnetic properties,” Nanomaterials 7, 373 (2017).CrossRef
42.
Zurück zum Zitat A. G. Roca, R. Costo, A. F. Rebolledo, S. Veintemillas-Verdaguer, P. Tartaj, T. González-Carreno, M. P. Morales, and C. J. Serna, “Progress in the preparation of magnetic nanoparticles for applications in biomedicine ,” J. Phys. D Appl. Phys. 42, 224002 (2009).CrossRef A. G. Roca, R. Costo, A. F. Rebolledo, S. Veintemillas-Verdaguer, P. Tartaj, T. González-Carreno, M. P. Morales, and C. J. Serna, “Progress in the preparation of magnetic nanoparticles for applications in biomedicine ,” J. Phys. D Appl. Phys. 42, 224002 (2009).CrossRef
43.
Zurück zum Zitat P. Moroz, S. K. Jones, and B. N. Gray, “Status of hyperthermia in the treatment of advanced liver cancer,” J. Surg. Oncol. 77, 259–269 (2001).CrossRef P. Moroz, S. K. Jones, and B. N. Gray, “Status of hyperthermia in the treatment of advanced liver cancer,” J. Surg. Oncol. 77, 259–269 (2001).CrossRef
44.
Zurück zum Zitat J. Llandro, J. J. Palfreyman, A. Ionescu, and C. H. W. Barnes, “Magnetic biosensor technologies for medical applications: A review,” Med. Biol. Eng. Comput. 48, 977–998 (2010).CrossRef J. Llandro, J. J. Palfreyman, A. Ionescu, and C. H. W. Barnes, “Magnetic biosensor technologies for medical applications: A review,” Med. Biol. Eng. Comput. 48, 977–998 (2010).CrossRef
45.
Zurück zum Zitat M. Coisson, G. Barrera, F. Celegato, L. Martino, F. Vinai, P. Martino, G. Ferraro, and P. Tiberto, “Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions,” J. Magn. Magn. Mater. 415, 2–7 (2016).CrossRef M. Coisson, G. Barrera, F. Celegato, L. Martino, F. Vinai, P. Martino, G. Ferraro, and P. Tiberto, “Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions,” J. Magn. Magn. Mater. 415, 2–7 (2016).CrossRef
46.
Zurück zum Zitat A. M. Pavlov, S. A. Gabriel, G. B. Sukhorukov, and D. J. Gould, “Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules,” Nanoscale 7, 9686–9693 (2015).CrossRef A. M. Pavlov, S. A. Gabriel, G. B. Sukhorukov, and D. J. Gould, “Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules,” Nanoscale 7, 9686–9693 (2015).CrossRef
47.
Zurück zum Zitat G. V. Kurlyandskaya, D. S. Portnov, I. V. Beketov, A. Larrañaga, A. P. Safronov, I. Orue, A. I. Medvedev, A. A. Chlenova, M. B. Sanchez-Ilarduya, Ana Martinez-Amesti, and A. V. Svalov, “Nanostructured materials for magnetic biosensing,” Biochim. Biophys. Acta 1861, 1494–1506 (2017).CrossRef G. V. Kurlyandskaya, D. S. Portnov, I. V. Beketov, A. Larrañaga, A. P. Safronov, I. Orue, A. I. Medvedev, A. A. Chlenova, M. B. Sanchez-Ilarduya, Ana Martinez-Amesti, and A. V. Svalov, “Nanostructured materials for magnetic biosensing,” Biochim. Biophys. Acta 1861, 1494–1506 (2017).CrossRef
48.
Zurück zum Zitat T. Liu, S. Hu, T. Liu, D. Liu, and S. Chen, “Magnetic-sensitive behaviour of intelligent ferrogels for controlled release of drug,” Langmuir 22, 5974–5978 (2006).CrossRef T. Liu, S. Hu, T. Liu, D. Liu, and S. Chen, “Magnetic-sensitive behaviour of intelligent ferrogels for controlled release of drug,” Langmuir 22, 5974–5978 (2006).CrossRef
49.
Zurück zum Zitat F. A. Blyakhman, A. P. Safronov, T. F. Shklyar, and M. A. Filipovich, “To the mechanism of polyelectrolyte gel periodic acting in the constant DC electric field,” Sens. Actuators A 229, 104–109 (2015).CrossRef F. A. Blyakhman, A. P. Safronov, T. F. Shklyar, and M. A. Filipovich, “To the mechanism of polyelectrolyte gel periodic acting in the constant DC electric field,” Sens. Actuators A 229, 104–109 (2015).CrossRef
50.
Zurück zum Zitat Electroactive Polymer Actuators as Artificial Muscles: Reality, Potential and Challenges, Ed. by Y. Bar-Cohen (SPIE Press, Bellingham, WA, USA, 2004). Electroactive Polymer Actuators as Artificial Muscles: Reality, Potential and Challenges, Ed. by Y. Bar-Cohen (SPIE Press, Bellingham, WA, USA, 2004).
51.
Zurück zum Zitat T.-Y. Liu, T.-Y. Chan, K.-S. Wang, and H.-M. Tsou, “Influence of magnetic nanoparticle arrangement in ferrogels for tunable biomolecule diffusion,” RSC Adv. 5, 90098–90102 (2015).CrossRef T.-Y. Liu, T.-Y. Chan, K.-S. Wang, and H.-M. Tsou, “Influence of magnetic nanoparticle arrangement in ferrogels for tunable biomolecule diffusion,” RSC Adv. 5, 90098–90102 (2015).CrossRef
52.
Zurück zum Zitat J. A. Galicia, O. Sandre, F. Cousin, D. Guemghar, C. Menager, and V. Cabuil, “Designing magnetic composite materials using aqueous magnetic fluids,” J. Phys.: Condens. Matter. 15, S1379–S1402 (2003). J. A. Galicia, O. Sandre, F. Cousin, D. Guemghar, C. Menager, and V. Cabuil, “Designing magnetic composite materials using aqueous magnetic fluids,” J. Phys.: Condens. Matter. 15, S1379–S1402 (2003).
53.
Zurück zum Zitat G. V. Kurlyandskaya, E. Fernandez, A. P. Safronov, A. V. Svalov, I. V. Beketov, A. Burgoa Beitia, A. García-Arribas, and F. A. Blyakhman, “Giant magnetoimpedance biosensor for ferrogel detection: model system to evaluate properties of natural tissue,” Appl. Phys. Lett. 106, 193702 (2015).CrossRef G. V. Kurlyandskaya, E. Fernandez, A. P. Safronov, A. V. Svalov, I. V. Beketov, A. Burgoa Beitia, A. García-Arribas, and F. A. Blyakhman, “Giant magnetoimpedance biosensor for ferrogel detection: model system to evaluate properties of natural tissue,” Appl. Phys. Lett. 106, 193702 (2015).CrossRef
Metadaten
Titel
Magnetic Materials for Thin Film Based Magnetoimpedance Biosensing
verfasst von
G. V. Kurlyandskaya
S. V. Shcherbinin
N. A. Buznikov
A. A. Chlenova
A. V. Svalov
Publikationsdatum
01.12.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 13/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19130143

Weitere Artikel der Ausgabe 13/2019

Physics of Metals and Metallography 13/2019 Zur Ausgabe