Skip to main content

2017 | OriginalPaper | Buchkapitel

Magnetic Nanoparticles-Based Conducting Polymer Nanocomposites

verfasst von : A. Muñoz-Bonilla, J. Sánchez-Marcos, P. Herrasti

Erschienen in: Conducting Polymer Hybrids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews the state of art of nanocomposites based on conducting polymers and magnetic nanoparticles. The preparation of hybrid nanocomposites with both magnetic and electrical properties has emerging as attractive alternative in a wide number of applications especially as microwave absorbing material and electromagnetic shielding. An overview of the different synthetic routes of the hybrid nanocomposites is presented, which outlines the most development techniques to prepare homogenous matrix, core–shell nanoparticles, and thin films. This chapter also covers the discussion of both the magnetic and electrical properties of the nanocomposites that significantly vary from the individual components. Finally varies of the most relevant applications of the magnetic nanoparticles-based conducting polymer nanocomposites are highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459CrossRef Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459CrossRef
2.
Zurück zum Zitat Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110CrossRef Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110CrossRef
3.
Zurück zum Zitat Colombo M, Carregal-Romero S, Casula MF et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306CrossRef Colombo M, Carregal-Romero S, Casula MF et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306CrossRef
4.
Zurück zum Zitat Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632CrossRef Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632CrossRef
5.
Zurück zum Zitat Kim HSS, Sohn BHH, Lee W et al (2002) Multifunctional layer-by-layer self-assembly of conducting polymers and magnetic nanoparticles. Thin Solid Films 419:173–177CrossRef Kim HSS, Sohn BHH, Lee W et al (2002) Multifunctional layer-by-layer self-assembly of conducting polymers and magnetic nanoparticles. Thin Solid Films 419:173–177CrossRef
6.
Zurück zum Zitat Poddar P, Wilson JL, Srikanth H et al (2004) Magnetic properties of conducting polymer doped with manganese–zinc ferrite nanoparticles. Nanotechnology 15:S570–S574CrossRef Poddar P, Wilson JL, Srikanth H et al (2004) Magnetic properties of conducting polymer doped with manganese–zinc ferrite nanoparticles. Nanotechnology 15:S570–S574CrossRef
7.
Zurück zum Zitat Jang J, Yoon H (2005) Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small 1:1195–1199CrossRef Jang J, Yoon H (2005) Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small 1:1195–1199CrossRef
8.
Zurück zum Zitat Xiao HM, Zhang WD, Wan MX, Fu SY (2009) Novel electromagnetic functionalized γ-Fe2O3/polypyrrole composite nanostructures with high conductivity. J Polym Sci, Part A: Polym Chem 47:4446–4453CrossRef Xiao HM, Zhang WD, Wan MX, Fu SY (2009) Novel electromagnetic functionalized γ-Fe2O3/polypyrrole composite nanostructures with high conductivity. J Polym Sci, Part A: Polym Chem 47:4446–4453CrossRef
9.
Zurück zum Zitat Janaky C, Endrodi B, Hajdu A, Visy C (2010) Synthesis and characterization of polypyrrole-magnetite-vitamin B12 hybrid composite electrodes. J Solid State Electrochem 14:339–346CrossRef Janaky C, Endrodi B, Hajdu A, Visy C (2010) Synthesis and characterization of polypyrrole-magnetite-vitamin B12 hybrid composite electrodes. J Solid State Electrochem 14:339–346CrossRef
10.
Zurück zum Zitat Ben Fredj H, Helali S, Esseghaier C et al (2008) Labeled magnetic nanoparticles assembly on polypyrrole film for biosensor applications. Talanta 75:740–747CrossRef Ben Fredj H, Helali S, Esseghaier C et al (2008) Labeled magnetic nanoparticles assembly on polypyrrole film for biosensor applications. Talanta 75:740–747CrossRef
11.
Zurück zum Zitat Mangeney C, Fertani M, Bousalem S et al (2007) Magnetic Fe2O3-polystyrene/PPy core/shell particles: bioreactivity and self-assembly. Langmuir 23:10940–10949 Mangeney C, Fertani M, Bousalem S et al (2007) Magnetic Fe2O3-polystyrene/PPy core/shell particles: bioreactivity and self-assembly. Langmuir 23:10940–10949
12.
Zurück zum Zitat Esman N, Haviv A, Lellouche J-P (2011) Magnetically responsive polypyrrole nanotubes using Ce(III)-stabilized maghemite nanoparticles. Nanotechnology 22:285604CrossRef Esman N, Haviv A, Lellouche J-P (2011) Magnetically responsive polypyrrole nanotubes using Ce(III)-stabilized maghemite nanoparticles. Nanotechnology 22:285604CrossRef
13.
Zurück zum Zitat Azadmanjiri J, Hojati-Talemi P, Simon GP et al (2011) Synthesis and electromagnetic interference shielding properties of iron oxide/polypyrrole nanocomposites. Polym Eng Sci 51:247–253CrossRef Azadmanjiri J, Hojati-Talemi P, Simon GP et al (2011) Synthesis and electromagnetic interference shielding properties of iron oxide/polypyrrole nanocomposites. Polym Eng Sci 51:247–253CrossRef
14.
Zurück zum Zitat Guo Z, Shin K, Karki AB et al (2008) Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. J Nanopart Res 11:1441–1452CrossRef Guo Z, Shin K, Karki AB et al (2008) Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. J Nanopart Res 11:1441–1452CrossRef
15.
Zurück zum Zitat Luo YL, Fan LH, Xu F et al (2010) Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics. Mater Chem Phys 120:590–597 Luo YL, Fan LH, Xu F et al (2010) Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics. Mater Chem Phys 120:590–597
16.
Zurück zum Zitat Karaoǧlu E, Baykal A, Deligöz H et al (2011) Synthesis and characteristics of poly(3-pyrrol-1-ylpropanoic acid) (PPyAA)-Fe3O4 nanocomposite. J Alloys Compd 509:8460–8468CrossRef Karaoǧlu E, Baykal A, Deligöz H et al (2011) Synthesis and characteristics of poly(3-pyrrol-1-ylpropanoic acid) (PPyAA)-Fe3O4 nanocomposite. J Alloys Compd 509:8460–8468CrossRef
17.
Zurück zum Zitat Temizel E, Ayan E, Senel M et al (2011) Synthesis, conductivity and magnetic properties of poly(N-pyrrole phosphonic acid)-Fe3O4 nanocomposite. Mater Chem Phys 131:284–291CrossRef Temizel E, Ayan E, Senel M et al (2011) Synthesis, conductivity and magnetic properties of poly(N-pyrrole phosphonic acid)-Fe3O4 nanocomposite. Mater Chem Phys 131:284–291CrossRef
18.
Zurück zum Zitat Alves KGB, Andrade CAS, Campello SL et al (2013) Magnetite/polypyrrole hybrid nanocomposites as a promising magnetic resonance imaging contrast material. J Appl Polym Sci 128:3170–3176CrossRef Alves KGB, Andrade CAS, Campello SL et al (2013) Magnetite/polypyrrole hybrid nanocomposites as a promising magnetic resonance imaging contrast material. J Appl Polym Sci 128:3170–3176CrossRef
19.
Zurück zum Zitat Yen SJ, Chen EC, Chiang RK, Wu TM (2008) Preparation and characterization of polypyrrole/magnetite nanocomposites synthesized by in situ chemical oxidative polymerization. J Polym Sci, Part B: Polym Phys 46:1291–1300CrossRef Yen SJ, Chen EC, Chiang RK, Wu TM (2008) Preparation and characterization of polypyrrole/magnetite nanocomposites synthesized by in situ chemical oxidative polymerization. J Polym Sci, Part B: Polym Phys 46:1291–1300CrossRef
20.
Zurück zum Zitat Xu Z, Gao M, Yu L et al (2014) Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films. ACS Appl Mater Interfaces 6:17823–17830CrossRef Xu Z, Gao M, Yu L et al (2014) Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films. ACS Appl Mater Interfaces 6:17823–17830CrossRef
21.
Zurück zum Zitat Reddy KR, Lee KP, Gopalan AI (2008) Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf A Physicochem Eng Asp 320:49–56CrossRef Reddy KR, Lee KP, Gopalan AI (2008) Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf A Physicochem Eng Asp 320:49–56CrossRef
22.
Zurück zum Zitat Deng J (2002) Magnetic and conducting Fe3O4–cross-linked polyaniline nanoparticles with core–shell structure. Polymer (Guildf) 43:2179–2184 Deng J (2002) Magnetic and conducting Fe3O4–cross-linked polyaniline nanoparticles with core–shell structure. Polymer (Guildf) 43:2179–2184
23.
Zurück zum Zitat Long YY-Z, Chen Z, Duvail JL et al (2005) Micro- and nano-structured conducting polymeric materials. Prog Polym Sci 35:1673 Long YY-Z, Chen Z, Duvail JL et al (2005) Micro- and nano-structured conducting polymeric materials. Prog Polym Sci 35:1673
24.
Zurück zum Zitat Deng J, He C, Peng Y et al (2003) Magnetic and conductive Fe3O4-polyaniline nanoparticles with core–shell structure. Synth Met 139:295–301CrossRef Deng J, He C, Peng Y et al (2003) Magnetic and conductive Fe3O4-polyaniline nanoparticles with core–shell structure. Synth Met 139:295–301CrossRef
25.
Zurück zum Zitat Phang SW, Kuramoto N (2010) Microwave absorption property of polyaniline nanocomposites containing TiO2 and Fe3O4 nanoparticles after FeCl 36H2O treatment. Polym Compos 31:516–523 Phang SW, Kuramoto N (2010) Microwave absorption property of polyaniline nanocomposites containing TiO2 and Fe3O4 nanoparticles after FeCl 36H2O treatment. Polym Compos 31:516–523
26.
Zurück zum Zitat Jacobo SE, Aphesteguy JC, Lopez Anton R et al (2007) Influence of the preparation procedure on the properties of polyaniline based magnetic composites. Eur Polym J 43:1333–1346CrossRef Jacobo SE, Aphesteguy JC, Lopez Anton R et al (2007) Influence of the preparation procedure on the properties of polyaniline based magnetic composites. Eur Polym J 43:1333–1346CrossRef
27.
Zurück zum Zitat Zhang Z, Wan M (2003) Nanostructures of polyaniline composites containing nano-magnet. Synth Met 132:205–212CrossRef Zhang Z, Wan M (2003) Nanostructures of polyaniline composites containing nano-magnet. Synth Met 132:205–212CrossRef
28.
Zurück zum Zitat Kong L, Lu X, Jin E et al (2009) Constructingmagneticpolyaniline metalhybridnanostructuresusing.pdf. J Solid State Chem 182:2081–2087CrossRef Kong L, Lu X, Jin E et al (2009) Constructingmagneticpolyaniline metalhybridnanostructuresusing.pdf. J Solid State Chem 182:2081–2087CrossRef
29.
Zurück zum Zitat Della Pina C, Rossi M, Ferretti AM et al (2012) One-pot synthesis of polyaniline/Fe3O4 nanocomposites with magnetic and conductive behaviour. Catalytic effect of Fe3O4 nanoparticles. Synth Met 162:2250–2258CrossRef Della Pina C, Rossi M, Ferretti AM et al (2012) One-pot synthesis of polyaniline/Fe3O4 nanocomposites with magnetic and conductive behaviour. Catalytic effect of Fe3O4 nanoparticles. Synth Met 162:2250–2258CrossRef
30.
Zurück zum Zitat Park M, Cheng J, Choi J et al (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf B Biointerfaces 102:238–242CrossRef Park M, Cheng J, Choi J et al (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf B Biointerfaces 102:238–242CrossRef
31.
Zurück zum Zitat Mahto TK, Chowdhuri AR, Sahu SK (2014) Polyaniline-functionalized magnetic nanoparticles for the removal of toxic dye from wastewater. J Appl Polym Sci 131:40840CrossRef Mahto TK, Chowdhuri AR, Sahu SK (2014) Polyaniline-functionalized magnetic nanoparticles for the removal of toxic dye from wastewater. J Appl Polym Sci 131:40840CrossRef
32.
Zurück zum Zitat Prasanna GD, Jayanna HS, Lamani AR, Dash S (2011) Polyaniline/CoFe2O4 nanocomposites: a novel synthesis, characterization and magnetic properties. Synth Met 161:2306–2311 Prasanna GD, Jayanna HS, Lamani AR, Dash S (2011) Polyaniline/CoFe2O4 nanocomposites: a novel synthesis, characterization and magnetic properties. Synth Met 161:2306–2311
33.
Zurück zum Zitat Della C, Maria A, Ponti A, Falletta E (2015) A green approach to magnetically-hard electrically-conducting polyaniline/ CoFe2O4 nanocomposites. Compos Sci Technol 110:138–144CrossRef Della C, Maria A, Ponti A, Falletta E (2015) A green approach to magnetically-hard electrically-conducting polyaniline/ CoFe2O4 nanocomposites. Compos Sci Technol 110:138–144CrossRef
34.
Zurück zum Zitat Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456 Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456
35.
Zurück zum Zitat Khairy M (2014) Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth Met 189:34–41 Khairy M (2014) Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth Met 189:34–41
36.
Zurück zum Zitat Xie Y, Hong X, Wang X et al (2012) Preparation and electromagnetic properties of La-doped barium-ferrite/polythiophene composites. Synth Met 162:1643–1647CrossRef Xie Y, Hong X, Wang X et al (2012) Preparation and electromagnetic properties of La-doped barium-ferrite/polythiophene composites. Synth Met 162:1643–1647CrossRef
37.
Zurück zum Zitat Jiang J, Ai LH, Bin Qin D et al (2009) Preparation and characterization of electromagnetic functionalized polyaniline/BaFe12O19 composites. Synth Met 159:695–699 Jiang J, Ai LH, Bin Qin D et al (2009) Preparation and characterization of electromagnetic functionalized polyaniline/BaFe12O19 composites. Synth Met 159:695–699
38.
Zurück zum Zitat Wan M, Fan J (1998) Synthesis and ferromagnetic properties of composites of a water-soluble polyaniline copolymer. J Polym Sci 36:13–16 Wan M, Fan J (1998) Synthesis and ferromagnetic properties of composites of a water-soluble polyaniline copolymer. J Polym Sci 36:13–16
39.
Zurück zum Zitat Dhawan SK, Singh K, Bakhshi AK, Ohlan A (2009) Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption. Synth Met 159:2259–2262CrossRef Dhawan SK, Singh K, Bakhshi AK, Ohlan A (2009) Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption. Synth Met 159:2259–2262CrossRef
40.
Zurück zum Zitat Singh K, Ohlan A, Kotnala RK et al (2008) Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with γ-Fe2O3 nanoparticles. Mater Chem Phys 112:651–658 Singh K, Ohlan A, Kotnala RK et al (2008) Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with γ-Fe2O3 nanoparticles. Mater Chem Phys 112:651–658
41.
Zurück zum Zitat Nghia ND, Tung NT (2009) Study on synthesis and anticorrosion properties of polymer nanocomposites based on super paramagnetic Fe2O3·NiO nanoparticle and polyaniline. Synth Met 159:831–834 Nghia ND, Tung NT (2009) Study on synthesis and anticorrosion properties of polymer nanocomposites based on super paramagnetic Fe2O3·NiO nanoparticle and polyaniline. Synth Met 159:831–834
42.
Zurück zum Zitat Ai LH, Jiang J (2009) Facile synthesis and characterization of magnetic NiCr ferrospinel embedded in conducting polymer. J Alloys Compd 487:735–738CrossRef Ai LH, Jiang J (2009) Facile synthesis and characterization of magnetic NiCr ferrospinel embedded in conducting polymer. J Alloys Compd 487:735–738CrossRef
43.
Zurück zum Zitat Paterno LG, Fonseca FJ, Alcantara GB et al (2009) Fabrication and characterization of nanostructured conducting polymer films containing magnetic nanoparticles. Thin Solid Films 517:1753–1758CrossRef Paterno LG, Fonseca FJ, Alcantara GB et al (2009) Fabrication and characterization of nanostructured conducting polymer films containing magnetic nanoparticles. Thin Solid Films 517:1753–1758CrossRef
44.
Zurück zum Zitat Reddy KR, Lee K-P, Gopalan AI et al (2007) Synthesis and properties of magnetite/poly (aniline-co-8-amino-2-naphthalenesulfonic acid) (SPAN) nanocomposites Kakarla. Polym Adv Technol 18:38–43CrossRef Reddy KR, Lee K-P, Gopalan AI et al (2007) Synthesis and properties of magnetite/poly (aniline-co-8-amino-2-naphthalenesulfonic acid) (SPAN) nanocomposites Kakarla. Polym Adv Technol 18:38–43CrossRef
45.
Zurück zum Zitat Nanocomposites P, Poddar A, Mukherjee S et al (2011) Electrical transport and magnetic properties of pedot-ferrite nanocomposites. Polym Compos 32:629–638CrossRef Nanocomposites P, Poddar A, Mukherjee S et al (2011) Electrical transport and magnetic properties of pedot-ferrite nanocomposites. Polym Compos 32:629–638CrossRef
46.
Zurück zum Zitat Reddy KR, Park W, Sin BC et al (2009) Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J Colloid Interface Sci 335:34–39CrossRef Reddy KR, Park W, Sin BC et al (2009) Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J Colloid Interface Sci 335:34–39CrossRef
47.
Zurück zum Zitat Tung TT, Feller JF, Kim T et al (2012) Electromagnetic properties of Fe 3O 4-functionalized graphene and its composites with a conducting polymer. J Polym Sci, Part A: Polym Chem 50:927–935CrossRef Tung TT, Feller JF, Kim T et al (2012) Electromagnetic properties of Fe 3O 4-functionalized graphene and its composites with a conducting polymer. J Polym Sci, Part A: Polym Chem 50:927–935CrossRef
48.
Zurück zum Zitat Taccola S, Greco F, Zucca A et al (2013) Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Appl Mater Interfaces 5:6324–6332CrossRef Taccola S, Greco F, Zucca A et al (2013) Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Appl Mater Interfaces 5:6324–6332CrossRef
49.
Zurück zum Zitat Liu P-B, Huang Y, Sun X (2013) Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl Mater Interfaces 5:12355–12360 Liu P-B, Huang Y, Sun X (2013) Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl Mater Interfaces 5:12355–12360
50.
Zurück zum Zitat Akman O, Kavas H, Baykal A et al (2013) Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber. J Magn Magn Mater 327:151–158CrossRef Akman O, Kavas H, Baykal A et al (2013) Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber. J Magn Magn Mater 327:151–158CrossRef
51.
Zurück zum Zitat Li L, Xiang C, Liang X, Hao B (2010) Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: preparation and electromagnetic properties. Synth Met 160:28–34 Li L, Xiang C, Liang X, Hao B (2010) Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: preparation and electromagnetic properties. Synth Met 160:28–34
52.
Zurück zum Zitat Khafagy RM (2011) Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic polyaniline/MgFe2O4 nanocomposite having the core–shell structure. J Alloys Compd 509:9849–9857 Khafagy RM (2011) Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic polyaniline/MgFe2O4 nanocomposite having the core–shell structure. J Alloys Compd 509:9849–9857
53.
Zurück zum Zitat Cabrera L, Gutierrez S, Morales MP et al (2009) Magnetic conducting composites based on polypyrrol and iron oxide nanoparticles synthesized via electrochemistry. J Magn Magn Mater 321:2115–2120CrossRef Cabrera L, Gutierrez S, Morales MP et al (2009) Magnetic conducting composites based on polypyrrol and iron oxide nanoparticles synthesized via electrochemistry. J Magn Magn Mater 321:2115–2120CrossRef
54.
Zurück zum Zitat Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29:283–293CrossRef Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29:283–293CrossRef
55.
Zurück zum Zitat Genies EM, Bidan G, Diaz AF (1983) Spectroelectrochemical study of polypyrrole films. J Electroanal Chem Interfacial Electrochem 149:101–113CrossRef Genies EM, Bidan G, Diaz AF (1983) Spectroelectrochemical study of polypyrrole films. J Electroanal Chem Interfacial Electrochem 149:101–113CrossRef
56.
Zurück zum Zitat Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRef Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRef
57.
Zurück zum Zitat Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRef Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRef
58.
Zurück zum Zitat Cabrera L, Gutierrez S, Menendez N et al (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441CrossRef Cabrera L, Gutierrez S, Menendez N et al (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441CrossRef
59.
Zurück zum Zitat Mazarío E, Herrasti P, Morales MP, Menéndez N (2012) Synthesis and characterization of CoFe 2O 4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23:355708CrossRef Mazarío E, Herrasti P, Morales MP, Menéndez N (2012) Synthesis and characterization of CoFe 2O 4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23:355708CrossRef
60.
Zurück zum Zitat Mazarío E, Sánchez-Marcos J, Menéndez N et al (2015) High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route. J Phys Chem C 119:6828–6834CrossRef Mazarío E, Sánchez-Marcos J, Menéndez N et al (2015) High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route. J Phys Chem C 119:6828–6834CrossRef
61.
Zurück zum Zitat Basavaraja C, Jo EA, Huh DS (2010) Characterization and magnetic properties of conducting poly(N-vinylcarbazole)-capped magnetite nanocomposite Langmuir–Schaefer films. Mater Lett 64:762–764CrossRef Basavaraja C, Jo EA, Huh DS (2010) Characterization and magnetic properties of conducting poly(N-vinylcarbazole)-capped magnetite nanocomposite Langmuir–Schaefer films. Mater Lett 64:762–764CrossRef
62.
Zurück zum Zitat Kavas H, Durmus Z, Baykal A et al (2010) Synthesis and conductivity evaluation of PVTri-Fe3O4 nanocomposite. J Non Cryst Solids 356:484–489 Kavas H, Durmus Z, Baykal A et al (2010) Synthesis and conductivity evaluation of PVTri-Fe3O4 nanocomposite. J Non Cryst Solids 356:484–489
63.
Zurück zum Zitat Zhu YG, Li ZQ, Gu JJ et al (2006) Polyaniline/iron nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:3157–3164CrossRef Zhu YG, Li ZQ, Gu JJ et al (2006) Polyaniline/iron nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:3157–3164CrossRef
64.
Zurück zum Zitat Zhu Y, Li Z, Zhang D (2008) Electromagnetic nanocomposites prepared by cryomilling of polyaniline and Fe nanoparticles. J Polym Sci, Part B: Polym Phys 46:1571–1576CrossRef Zhu Y, Li Z, Zhang D (2008) Electromagnetic nanocomposites prepared by cryomilling of polyaniline and Fe nanoparticles. J Polym Sci, Part B: Polym Phys 46:1571–1576CrossRef
65.
Zurück zum Zitat Shiina I, Mukaiyama T (1994) A novel method for the preparation of macrolides. Chem Lett 6:677–680CrossRef Shiina I, Mukaiyama T (1994) A novel method for the preparation of macrolides. Chem Lett 6:677–680CrossRef
66.
Zurück zum Zitat Meixiang W, Wenguang L (1997) A composite of polyaniline with both conducting and ferromagnetic functions. J Polym Sci Part A 35:2129–2136CrossRef Meixiang W, Wenguang L (1997) A composite of polyaniline with both conducting and ferromagnetic functions. J Polym Sci Part A 35:2129–2136CrossRef
67.
Zurück zum Zitat Barbosa EF, Molina FJ, Lopes FM et al (2012) Immobilization of Peroxidase onto magnetite modified polyaniline. Sci World J 2012:1–5 Barbosa EF, Molina FJ, Lopes FM et al (2012) Immobilization of Peroxidase onto magnetite modified polyaniline. Sci World J 2012:1–5
68.
Zurück zum Zitat Jiang J, Ai LH, Liu AH (2010) A novel poly(o-anisidine)/CoFe2O4 multifunctional nanocomposite: preparation, characterization and properties. Synth Met 160:333–336 Jiang J, Ai LH, Liu AH (2010) A novel poly(o-anisidine)/CoFe2O4 multifunctional nanocomposite: preparation, characterization and properties. Synth Met 160:333–336
69.
Zurück zum Zitat Dey A, De A, De SK (2005) Electrical transport and dielectric relaxation in Fe3O4–polypyrrole hybrid nanocomposites. J Phys: Condens Matter 17:5895–5910 Dey A, De A, De SK (2005) Electrical transport and dielectric relaxation in Fe3O4–polypyrrole hybrid nanocomposites. J Phys: Condens Matter 17:5895–5910
70.
Zurück zum Zitat Turcu R, Pana O, Nan A et al (2008) Polypyrrole coated magnetite nanoparticles from water based nanofluids. J Phys D Appl Phys 41:245002CrossRef Turcu R, Pana O, Nan A et al (2008) Polypyrrole coated magnetite nanoparticles from water based nanofluids. J Phys D Appl Phys 41:245002CrossRef
71.
Zurück zum Zitat Resta IM, Horwitz G, Elizalde MLM et al (2013) Magnetic and conducting properties of composites of conducting polymers and ferrite nanoparticles. IEEE Trans Magn 49:4598–4601CrossRef Resta IM, Horwitz G, Elizalde MLM et al (2013) Magnetic and conducting properties of composites of conducting polymers and ferrite nanoparticles. IEEE Trans Magn 49:4598–4601CrossRef
72.
Zurück zum Zitat Xiaotun Y, Lingge X, Choon NS, Hardy CSO (2003) Magnetic and electrical properties of polypyrrole-coated -Fe2O3 nanocomposite particles. Nanotechnology 14:624–629 Xiaotun Y, Lingge X, Choon NS, Hardy CSO (2003) Magnetic and electrical properties of polypyrrole-coated -Fe2O3 nanocomposite particles. Nanotechnology 14:624–629
73.
Zurück zum Zitat De Oliveira HP, Andrade CAS, de Melo CP (2008) Electrical impedance spectroscopy investigation of surfactant-magnetite-polypyrrole particles. J Colloid Interface Sci 319:441–449CrossRef De Oliveira HP, Andrade CAS, de Melo CP (2008) Electrical impedance spectroscopy investigation of surfactant-magnetite-polypyrrole particles. J Colloid Interface Sci 319:441–449CrossRef
74.
Zurück zum Zitat Shen W, Shi M, Wang M, Chen H (2010) A simple synthesis of Fe3O4 nanoclusters and their electromagnetic nanocomposites with polyaniline. Mater Chem Phys 122:588–594 Shen W, Shi M, Wang M, Chen H (2010) A simple synthesis of Fe3O4 nanoclusters and their electromagnetic nanocomposites with polyaniline. Mater Chem Phys 122:588–594
75.
Zurück zum Zitat Ramesan MT (2013) Synthesis and characterization of magnetoelectric nanomaterial composed of Fe3O4 and polyindole. Adv Polym Technol 32:21362 Ramesan MT (2013) Synthesis and characterization of magnetoelectric nanomaterial composed of Fe3O4 and polyindole. Adv Polym Technol 32:21362
76.
Zurück zum Zitat Varshney S, Ohlan A, Jain VK et al (2014) Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding. Mater Chem Phys 143:806–813CrossRef Varshney S, Ohlan A, Jain VK et al (2014) Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding. Mater Chem Phys 143:806–813CrossRef
77.
Zurück zum Zitat Wuang SC, Neoh KG, Kang E-T et al (2007) Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. J Mater Chem 17:3354 Wuang SC, Neoh KG, Kang E-T et al (2007) Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. J Mater Chem 17:3354
78.
Zurück zum Zitat Chen A, Wang H, Zhao B, Li X (2003) The preparation of polypyrrole-Fe3O4 nanocomposites by the use of common ion effect. Synth Met 139:411–415 Chen A, Wang H, Zhao B, Li X (2003) The preparation of polypyrrole-Fe3O4 nanocomposites by the use of common ion effect. Synth Met 139:411–415
79.
Zurück zum Zitat Long Y-Z, Li M-M, Gu C et al (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442CrossRef Long Y-Z, Li M-M, Gu C et al (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442CrossRef
80.
Zurück zum Zitat Csaba J, Csaba V, Ottó B, Etelka T (2009) Conducting polymer-based electrode with magnetic behavior: electrochemical synthesis of poly(3-thiophene-acetic-acid)/magnetite nanocomposite thin layers. J Phys Chem C 113:1352–1358CrossRef Csaba J, Csaba V, Ottó B, Etelka T (2009) Conducting polymer-based electrode with magnetic behavior: electrochemical synthesis of poly(3-thiophene-acetic-acid)/magnetite nanocomposite thin layers. J Phys Chem C 113:1352–1358CrossRef
81.
Zurück zum Zitat Janáky C, Kormányos A, Visy C (2011) Magnetic hybrid modified electrodes, based on magnetite nanoparticle containing polyaniline and poly (3,4-ethylenedioxythiophene). J Solid State Electrochem 15:2351–2359CrossRef Janáky C, Kormányos A, Visy C (2011) Magnetic hybrid modified electrodes, based on magnetite nanoparticle containing polyaniline and poly (3,4-ethylenedioxythiophene). J Solid State Electrochem 15:2351–2359CrossRef
82.
Zurück zum Zitat Yang S, Liu D, Liao F et al (2012) Synthesis, characterization, morphology control of poly (p-phenylenediamine)-Fe3O4 magnetic micro-composite and their application for the removal of Cr2O72—from water. Synth Met 162:2329–2336 Yang S, Liu D, Liao F et al (2012) Synthesis, characterization, morphology control of poly (p-phenylenediamine)-Fe3O4 magnetic micro-composite and their application for the removal of Cr2O72—from water. Synth Met 162:2329–2336
83.
Zurück zum Zitat Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542CrossRef Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542CrossRef
84.
Zurück zum Zitat Bedanta S, Kleemann W (2008) Supermagnetism. J Phys D Appl Phys 42:013001CrossRef Bedanta S, Kleemann W (2008) Supermagnetism. J Phys D Appl Phys 42:013001CrossRef
85.
Zurück zum Zitat Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542CrossRef Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542CrossRef
86.
Zurück zum Zitat Meiklejohn WH, Bean CP (1957) New magnetic anisotropy. Phys Rev 105:904–913CrossRef Meiklejohn WH, Bean CP (1957) New magnetic anisotropy. Phys Rev 105:904–913CrossRef
87.
Zurück zum Zitat Chiang CK, Druy MA, Gau SC et al (1978) Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J Am Chem Soc 100:1013–1015CrossRef Chiang CK, Druy MA, Gau SC et al (1978) Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J Am Chem Soc 100:1013–1015CrossRef
88.
Zurück zum Zitat Shirakawa H, Macdiarmaid AG, Chiang CK (1977) Electrical conductivity in doped polacetylene. Phys Rev Lett 39:1098–1101CrossRef Shirakawa H, Macdiarmaid AG, Chiang CK (1977) Electrical conductivity in doped polacetylene. Phys Rev Lett 39:1098–1101CrossRef
89.
Zurück zum Zitat Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371CrossRef Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371CrossRef
90.
Zurück zum Zitat Heeger AJ (2001) Nobel lecture: simuconducting and metallic polymers: the fourth generation of polymeric materials. Rev Mod Phys 73:681CrossRef Heeger AJ (2001) Nobel lecture: simuconducting and metallic polymers: the fourth generation of polymeric materials. Rev Mod Phys 73:681CrossRef
91.
Zurück zum Zitat Bredas J, Street G (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 1305:309–315CrossRef Bredas J, Street G (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 1305:309–315CrossRef
92.
Zurück zum Zitat Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005) One-pot synthesis of polyaniline-metal nanocomposites. Chem Mater 17:5941–5944CrossRef Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005) One-pot synthesis of polyaniline-metal nanocomposites. Chem Mater 17:5941–5944CrossRef
93.
Zurück zum Zitat Reddy KR, Sin BC, Ryu KS et al (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603CrossRef Reddy KR, Sin BC, Ryu KS et al (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603CrossRef
94.
Zurück zum Zitat Negi YS, Adhyapak PV (2002) Development in polyaniline conducting polymers. J Macromol Sci Part C Polym Rev 42:35–53CrossRef Negi YS, Adhyapak PV (2002) Development in polyaniline conducting polymers. J Macromol Sci Part C Polym Rev 42:35–53CrossRef
95.
Zurück zum Zitat Huang J (2006) Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl Chem 78:15–27CrossRef Huang J (2006) Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl Chem 78:15–27CrossRef
96.
Zurück zum Zitat Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRef Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRef
97.
Zurück zum Zitat Li S, Zhang G, Jing G, Kan J (2008) Aqueous zinc–polyaniline secondary battery. Synth Met 158:242–245CrossRef Li S, Zhang G, Jing G, Kan J (2008) Aqueous zinc–polyaniline secondary battery. Synth Met 158:242–245CrossRef
98.
Zurück zum Zitat Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821CrossRef Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821CrossRef
99.
Zurück zum Zitat Zhong H, Yuan R, Chai Y et al (2011) In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor. Talanta 85:104–111CrossRef Zhong H, Yuan R, Chai Y et al (2011) In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor. Talanta 85:104–111CrossRef
100.
Zurück zum Zitat Karim MR, Lee CJ, Lee MS (2006) Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J Polym Sci, Part A: Polym Chem 44:5283–5290CrossRef Karim MR, Lee CJ, Lee MS (2006) Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J Polym Sci, Part A: Polym Chem 44:5283–5290CrossRef
101.
Zurück zum Zitat Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399CrossRef Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399CrossRef
102.
Zurück zum Zitat Rozlosnik N (2009) New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes. Anal Bioanal Chem 395:637–645CrossRef Rozlosnik N (2009) New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes. Anal Bioanal Chem 395:637–645CrossRef
103.
Zurück zum Zitat Bertran O, Armelin E, Estrany F et al (2010) Poly(2-thiophen-3-yl-malonic acid), a polythiophene with two carboxylic acids per repeating unit. J Phys Chem B 114:6281–6290CrossRef Bertran O, Armelin E, Estrany F et al (2010) Poly(2-thiophen-3-yl-malonic acid), a polythiophene with two carboxylic acids per repeating unit. J Phys Chem B 114:6281–6290CrossRef
104.
Zurück zum Zitat Cao J, Hu G, Peng Z et al (2015) Polypyrrole-coated LiCoO2 nanocomposite with enhanced electrochemical properties at high voltage for lithium-ion batteries. J Power Sources 281:49–55CrossRef Cao J, Hu G, Peng Z et al (2015) Polypyrrole-coated LiCoO2 nanocomposite with enhanced electrochemical properties at high voltage for lithium-ion batteries. J Power Sources 281:49–55CrossRef
105.
Zurück zum Zitat Wang W-Y, Ting P-N, Luo S-H, Lin J-Y (2014) Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells. Electrochim Acta 137:721–727CrossRef Wang W-Y, Ting P-N, Luo S-H, Lin J-Y (2014) Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells. Electrochim Acta 137:721–727CrossRef
106.
Zurück zum Zitat Herrasti P, del Rio AI, Recio J (2007) Electrodeposition of homogeneous and adherent polypyrrole on copper for corrosion protection. Electrochim Acta 52:6496–6501CrossRef Herrasti P, del Rio AI, Recio J (2007) Electrodeposition of homogeneous and adherent polypyrrole on copper for corrosion protection. Electrochim Acta 52:6496–6501CrossRef
107.
Zurück zum Zitat Ayenimo JG, Adeloju SB (2015) Inhibitive potentiometric detection of trace metals with ultrathin polypyrrole glucose oxidase biosensor. Talanta 137:62–70CrossRef Ayenimo JG, Adeloju SB (2015) Inhibitive potentiometric detection of trace metals with ultrathin polypyrrole glucose oxidase biosensor. Talanta 137:62–70CrossRef
108.
Zurück zum Zitat Mohamed MB, Karimat EL-S (2014) Structural, magnetic and dielectric properties of (PANI)–Ni0.5Zn0.5Fe1.5Cr0.5O4 nanocomposite. Compos Part B Eng 56:270–278CrossRef Mohamed MB, Karimat EL-S (2014) Structural, magnetic and dielectric properties of (PANI)–Ni0.5Zn0.5Fe1.5Cr0.5O4 nanocomposite. Compos Part B Eng 56:270–278CrossRef
109.
Zurück zum Zitat Pana O, Soran ML, Leostean C et al (2012) Interface charge transfer in polypyrrole coated perovskite manganite magnetic nanoparticles. J Appl Phys 111:044309CrossRef Pana O, Soran ML, Leostean C et al (2012) Interface charge transfer in polypyrrole coated perovskite manganite magnetic nanoparticles. J Appl Phys 111:044309CrossRef
110.
Zurück zum Zitat Antonel PS, Berhó FM, Jorge G, Molina FV (2015) Magnetic composites of CoFe2O4 nanoparticles in a poly(aniline) matrix: enhancement of remanence ratio and coercivity. Synth Met 199:292–302CrossRef Antonel PS, Berhó FM, Jorge G, Molina FV (2015) Magnetic composites of CoFe2O4 nanoparticles in a poly(aniline) matrix: enhancement of remanence ratio and coercivity. Synth Met 199:292–302CrossRef
111.
Zurück zum Zitat Sharma R, Malik R, Lamba S, Annapoorni S (2008) Metal oxide/polyaniline nanocomposites: cluster size and composition dependent structural and magnetic properties. Bull Mater Sci 31:409–413CrossRef Sharma R, Malik R, Lamba S, Annapoorni S (2008) Metal oxide/polyaniline nanocomposites: cluster size and composition dependent structural and magnetic properties. Bull Mater Sci 31:409–413CrossRef
112.
Zurück zum Zitat Sharma R, Lamba S, Annapoorni S (2004) Magnetic properties of polypyrrole-coated iron oxide nanoparticles. J Phys D Appl Phys 38:11 Sharma R, Lamba S, Annapoorni S (2004) Magnetic properties of polypyrrole-coated iron oxide nanoparticles. J Phys D Appl Phys 38:11
113.
Zurück zum Zitat Khairy M (2014) Polyaniline-Zn0.2Mn0.8 Fe2O4 ferrite core–shell composite: preparation, characterization and properties. J Alloys Compd 608:283–291CrossRef Khairy M (2014) Polyaniline-Zn0.2Mn0.8 Fe2O4 ferrite core–shell composite: preparation, characterization and properties. J Alloys Compd 608:283–291CrossRef
114.
Zurück zum Zitat Khan JA, Qasim M, Singh BR et al (2013) Synthesis and characterization of structural, optical, thermal and dielectric properties of polyaniline/CoFe2O4 nanocomposites with special reference to photocatalytic activity. Spectrochim Acta Part A Mol Biomol Spectrosc 109:313–321CrossRef Khan JA, Qasim M, Singh BR et al (2013) Synthesis and characterization of structural, optical, thermal and dielectric properties of polyaniline/CoFe2O4 nanocomposites with special reference to photocatalytic activity. Spectrochim Acta Part A Mol Biomol Spectrosc 109:313–321CrossRef
115.
Zurück zum Zitat Qiu G, Wang Q, Nie M (2006) Polypyrrole-Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation. Macromol Mater Eng 291:68–74CrossRef Qiu G, Wang Q, Nie M (2006) Polypyrrole-Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation. Macromol Mater Eng 291:68–74CrossRef
116.
Zurück zum Zitat Song X, Gong H, Yin S et al (2014) Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided Photothermal therapy. Adv Funct Mater 24:1194–1201CrossRef Song X, Gong H, Yin S et al (2014) Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided Photothermal therapy. Adv Funct Mater 24:1194–1201CrossRef
117.
Zurück zum Zitat Xiao H-M, Fu S-Y (2014) Synthesis and physical properties of electromagnetic polypyrrole composites via addition of magnetic crystals. CrystEngComm 16:2097–2112CrossRef Xiao H-M, Fu S-Y (2014) Synthesis and physical properties of electromagnetic polypyrrole composites via addition of magnetic crystals. CrystEngComm 16:2097–2112CrossRef
118.
Zurück zum Zitat Zhang CS, Ni QQ, Fu SY, Kurashiki K (2007) Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos Sci Technol 67:2973–2980CrossRef Zhang CS, Ni QQ, Fu SY, Kurashiki K (2007) Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos Sci Technol 67:2973–2980CrossRef
119.
Zurück zum Zitat Saini P, Choudhary V, Singh BP et al (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend. Synth Met 161:1522–1526CrossRef Saini P, Choudhary V, Singh BP et al (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend. Synth Met 161:1522–1526CrossRef
120.
Zurück zum Zitat Ohlan A, Singh K, Chandra A, Dhawan SK (2010) Microwave absorption behavior of core–Shell structured poly (3,4-ethylenedioxy thiophene)–barium ferrite nanocomposites. ACS Appl Mater Interfaces 2:927–933CrossRef Ohlan A, Singh K, Chandra A, Dhawan SK (2010) Microwave absorption behavior of core–Shell structured poly (3,4-ethylenedioxy thiophene)–barium ferrite nanocomposites. ACS Appl Mater Interfaces 2:927–933CrossRef
121.
Zurück zum Zitat Ohlan A, Singh K, Chandra A, Dhawan SK (2008) Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18 GHz. Appl Phys Lett 93:053114CrossRef Ohlan A, Singh K, Chandra A, Dhawan SK (2008) Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18 GHz. Appl Phys Lett 93:053114CrossRef
122.
Zurück zum Zitat Varshney S, Singh K, Ohlan A et al (2012) Synthesis, characterization and surface properties of Fe2O3 decorated ferromagnetic polypyrrole nanocomposites. J Alloys Compd 538:107–114CrossRef Varshney S, Singh K, Ohlan A et al (2012) Synthesis, characterization and surface properties of Fe2O3 decorated ferromagnetic polypyrrole nanocomposites. J Alloys Compd 538:107–114CrossRef
123.
Zurück zum Zitat Wang H, Ma N, Yan Z et al (2015) Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties. Nanoscale 7:7189–7196CrossRef Wang H, Ma N, Yan Z et al (2015) Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties. Nanoscale 7:7189–7196CrossRef
124.
Zurück zum Zitat Singh K, Ohlan A, Bakhshi AK, Dhawan SK (2010) Synthesis of conducting ferromagnetic nanocomposite with improved microwave absorption properties. Mater Chem Phys 119:201–207CrossRef Singh K, Ohlan A, Bakhshi AK, Dhawan SK (2010) Synthesis of conducting ferromagnetic nanocomposite with improved microwave absorption properties. Mater Chem Phys 119:201–207CrossRef
125.
Zurück zum Zitat Liu P, Huang Y, Zhang X (2015) Preparation and excellent microwave absorption properties of ferromagnetic graphene/poly(3, 4-ethylenedioxythiophene)/CoFe2O4 nanocomposites. Powder Technol 276:112–117 Liu P, Huang Y, Zhang X (2015) Preparation and excellent microwave absorption properties of ferromagnetic graphene/poly(3, 4-ethylenedioxythiophene)/CoFe2O4 nanocomposites. Powder Technol 276:112–117
126.
Zurück zum Zitat Wang K, Yi C, Hu X et al (2014) Enhanced performance of polymer solar cells using PEDOT:PSS doped with Fe3O4 magnetic nanoparticles aligned by an external magnetostatic field as an anode buffer layer. ACS Appl Mater Interfaces 6:13201–13208CrossRef Wang K, Yi C, Hu X et al (2014) Enhanced performance of polymer solar cells using PEDOT:PSS doped with Fe3O4 magnetic nanoparticles aligned by an external magnetostatic field as an anode buffer layer. ACS Appl Mater Interfaces 6:13201–13208CrossRef
127.
Zurück zum Zitat Wang K, Ren H, Yi C et al (2013) Solution-processed Fe3O4 magnetic nanoparticle thin film aligned by an external magnetostatic field as a hole extraction layer for polymer solar cells. ACS Appl Mater Interfaces 5:10325–10330CrossRef Wang K, Ren H, Yi C et al (2013) Solution-processed Fe3O4 magnetic nanoparticle thin film aligned by an external magnetostatic field as a hole extraction layer for polymer solar cells. ACS Appl Mater Interfaces 5:10325–10330CrossRef
128.
Zurück zum Zitat Zhang W, Xu Y, Wang H et al (2011) Fe3O4 nanoparticles induced magnetic field effect on efficiency enhancement of P3HT:PCBM bulk heterojunction polymer solar cells. Sol Energy Mater Sol Cells 95:2880–2885CrossRef Zhang W, Xu Y, Wang H et al (2011) Fe3O4 nanoparticles induced magnetic field effect on efficiency enhancement of P3HT:PCBM bulk heterojunction polymer solar cells. Sol Energy Mater Sol Cells 95:2880–2885CrossRef
129.
Zurück zum Zitat Shahnavaz Z, Lorestani F, Alias Y, Woi PM (2014) Polypyrrole–ZnFe2O4 magnetic nano-composite with core–shell structure for glucose sensing. Appl Surf Sci 317:622–629CrossRef Shahnavaz Z, Lorestani F, Alias Y, Woi PM (2014) Polypyrrole–ZnFe2O4 magnetic nano-composite with core–shell structure for glucose sensing. Appl Surf Sci 317:622–629CrossRef
130.
Zurück zum Zitat Yang Z, Zhang C, Zhang J, Bai W (2014) Potentiometric glucose biosensor based on core–shell Fe3O4-enzyme-polypyrrole nanoparticles. Biosens Bioelectron 51:268–273 Yang Z, Zhang C, Zhang J, Bai W (2014) Potentiometric glucose biosensor based on core–shell Fe3O4-enzyme-polypyrrole nanoparticles. Biosens Bioelectron 51:268–273
131.
Zurück zum Zitat Yang Z, Shang X, Zhang C, Zhu J (2014) Photoelectrochemical bilirubin biosensor based on Fe3O 4/hydroxyapatite/molecularly imprinted polypyrrole nanoparticles. Sens Actuators, B Chem 201:167–172CrossRef Yang Z, Shang X, Zhang C, Zhu J (2014) Photoelectrochemical bilirubin biosensor based on Fe3O 4/hydroxyapatite/molecularly imprinted polypyrrole nanoparticles. Sens Actuators, B Chem 201:167–172CrossRef
132.
Zurück zum Zitat Baghayeri M, Nazarzadeh Zare E, Mansour Lakouraj M (2014) A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens Bioelectron 55:259–265 Baghayeri M, Nazarzadeh Zare E, Mansour Lakouraj M (2014) A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens Bioelectron 55:259–265
133.
Zurück zum Zitat Suresh R, Giribabu K, Manigandan R et al (2014) Fe2O3@polyaniline nanocomposite: characterization and unusual sensing property. Mater Lett 128:369–372 Suresh R, Giribabu K, Manigandan R et al (2014) Fe2O3@polyaniline nanocomposite: characterization and unusual sensing property. Mater Lett 128:369–372
134.
Zurück zum Zitat Suri K, Annapoorni S, Sarkar AK, Tandon RP (2002) Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sens Actuators B Chem 81:277–282CrossRef Suri K, Annapoorni S, Sarkar AK, Tandon RP (2002) Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sens Actuators B Chem 81:277–282CrossRef
135.
Zurück zum Zitat Tandon RP, Tripathy MR, Arora AK, Hotchandani S (2006) Gas and humidity response of iron oxide—Polypyrrole nanocomposites. Sens Actuators B Chem 114:768–773CrossRef Tandon RP, Tripathy MR, Arora AK, Hotchandani S (2006) Gas and humidity response of iron oxide—Polypyrrole nanocomposites. Sens Actuators B Chem 114:768–773CrossRef
Metadaten
Titel
Magnetic Nanoparticles-Based Conducting Polymer Nanocomposites
verfasst von
A. Muñoz-Bonilla
J. Sánchez-Marcos
P. Herrasti
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-46458-9_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.