2009 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Nanoscale Magnetic Materials and Applications
Giant magnetically induced strain up to 50 times larger compared to the strain of giant magnetostriction was observed in some Heusler alloys, particularly in Ni–Mn–Ga. In analogy with the shape memory phenomenon this effect was called magnetic shape memory effect. The effect includes two different phenomena: a magnetically induced structural phase transformation (usually a martensitic transformation) and a magnetically induced structural reorientation occurring in the martensitic phase. Transformation behavior, structure of the martensite, and phenomenology of the magnetically induced reorientation are described. The description is based mainly on the well-studied compound Ni–Mn–Ga.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
Zurück zum Zitat Martensite, Eds. G. B. Olson and W. S. Owen, ASM International (1992). ISBN-13: 978-0871704344
Martensite, Eds. G. B. Olson and W. S. Owen, ASM International (1992). ISBN-13: 978-0871704344
Zurück zum Zitat Shape Memory Materials, Eds. K Otsuka and C. M. Wayman, Cambridge University Press (1998).
Shape Memory Materials, Eds. K Otsuka and C. M. Wayman, Cambridge University Press (1998).
Zurück zum Zitat Bhattacharya K. Microstructure of Martensite, Oxford University Press Inc., New York (2003). MATH Bhattacharya K.
Microstructure of Martensite, Oxford University Press Inc., New York (2003).
MATH
Zurück zum Zitat O’Handley. R. C. Modern Magnetic Materials, John Wiley & Sons, Inc, New York (2000) O’Handley. R. C.
Modern Magnetic Materials, John Wiley & Sons, Inc, New York (2000)
Zurück zum Zitat Hubert, A. and Schäfer, S. Magnetic Domains, Springer, Berlin (1998) Hubert, A. and Schäfer, S.
Magnetic Domains, Springer, Berlin (1998)
Zurück zum Zitat Cullity, B. D. Introduction to Magnetic Materials, Addison-Wesley, Reading, MA, London (1972) Cullity, B. D.
Introduction to Magnetic Materials, Addison-Wesley, Reading, MA, London (1972)
1.
Zurück zum Zitat K. Bhattacharya, R. D. James. Science 307, 53 (2005);. Carolyn Yeates, “Are Smart Materials Intelligent?” INSPEC Matters 77 (1994). CrossRef K. Bhattacharya, R. D. James. Science 307, 53 (2005);. Carolyn Yeates, “Are Smart Materials Intelligent?” INSPEC Matters 77 (1994).
CrossRef
2.
Zurück zum Zitat Publications about MSM or MIR effect increases nearly exponentially, the quoted literature can be only small incomplete selection. There are specialized conferences as, e.g., ESOMAT and ICOMAT, which in part (particularly after year 2000) concentrate on MSM effect. Publications about MSM or MIR effect increases nearly exponentially, the quoted literature can be only small incomplete selection. There are specialized conferences as, e.g., ESOMAT and ICOMAT, which in part (particularly after year 2000) concentrate on MSM effect.
3.
Zurück zum Zitat K. Ullakko, J. K. Huang, C. Kanter, V. V. Kokorin and R. C. O’Handley. Large magnetic-field-induced strains in Ni2MnGa single crystal. Appl. Phys. Lett. 69, 1966–1968 (1996). CrossRef K. Ullakko, J. K. Huang, C. Kanter, V. V. Kokorin and R. C. O’Handley. Large magnetic-field-induced strains in Ni2MnGa single crystal. Appl. Phys. Lett. 69, 1966–1968 (1996).
CrossRef
4.
Zurück zum Zitat O. Heczko, A. Sozinov and K. Ullakko. Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Trans. Magn. 36, 3266–3268 (2000). CrossRef O. Heczko, A. Sozinov and K. Ullakko. Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Trans. Magn. 36, 3266–3268 (2000).
CrossRef
5.
Zurück zum Zitat A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko. Giant magnetic-field induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746–1748 (2002). CrossRef A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko. Giant magnetic-field induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746–1748 (2002).
CrossRef
6.
Zurück zum Zitat N. Glavatska, G. Mogilniy, I. Glavatsky, S. Danilkin, D. Hohlwein, A. Beskrovnij, O. Söderberg and V. K. Lindroos. Temperature dependence of martensite structure and its effect on magnetic-field-induced strain in Ni2MnGa magnetic shape memory alloys. J. de Physique IV 112, 963–967 (2003). CrossRef N. Glavatska, G. Mogilniy, I. Glavatsky, S. Danilkin, D. Hohlwein, A. Beskrovnij, O. Söderberg and V. K. Lindroos. Temperature dependence of martensite structure and its effect on magnetic-field-induced strain in Ni2MnGa magnetic shape memory alloys. J. de Physique IV 112, 963–967 (2003).
CrossRef
7.
Zurück zum Zitat P. Mullner, V. A. Chernenko and G. Kostorz, A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity). J. Magn. Magn. Mater. 267, 325–334 (2003). CrossRef P. Mullner, V. A. Chernenko and G. Kostorz, A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity). J. Magn. Magn. Mater. 267, 325–334 (2003).
CrossRef
8.
Zurück zum Zitat O. Söderberg, A. Sozinov, Y. Ge, S.-P. Hannula and V. K. Lindroos. Giant magnetostrictive materials. In: Buschow J (ed.) Handbook of Magnetic Materials, Elsevier Science, Amsterdam, Vol. 16, pp. 1–39 (2006). O. Söderberg, A. Sozinov, Y. Ge, S.-P. Hannula and V. K. Lindroos. Giant magnetostrictive materials. In: Buschow J (ed.) Handbook of Magnetic Materials, Elsevier Science, Amsterdam, Vol. 16, pp. 1–39 (2006).
9.
Zurück zum Zitat S. J. Murray, M. A. Marioni, A. M. Kukla, J. Robinson, R. C. O’Handley and S. M. Allen. Large field-induced strain in single crystalline Ni–Mn–Ga ferromagnetic shape memory alloy. J. Appl. Phys. 87, 5774–5776 (2000). CrossRef S. J. Murray, M. A. Marioni, A. M. Kukla, J. Robinson, R. C. O’Handley and S. M. Allen. Large field-induced strain in single crystalline Ni–Mn–Ga ferromagnetic shape memory alloy. J. Appl. Phys. 87, 5774–5776 (2000).
CrossRef
10.
Zurück zum Zitat I. Takeuchi, O. O. Famodu, J. C. Read, M. A. Aronova, K. S. Chang, C. Craciunescu, S. E. Lofland, M. Wuttig, F. C. Wellstood, L. Knauss and A. Orozco. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2, 180–184 (2003). CrossRef I. Takeuchi, O. O. Famodu, J. C. Read, M. A. Aronova, K. S. Chang, C. Craciunescu, S. E. Lofland, M. Wuttig, F. C. Wellstood, L. Knauss and A. Orozco. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2, 180–184 (2003).
CrossRef
11.
Zurück zum Zitat M. Wuttig, J. Li and C. Craciunescu. A new ferromagnetic shape memory alloy system. Scr. Mater. 44, 2393–2397 (2001). CrossRef M. Wuttig, J. Li and C. Craciunescu. A new ferromagnetic shape memory alloy system. Scr. Mater. 44, 2393–2397 (2001).
CrossRef
12.
Zurück zum Zitat A. N. Lavrov, S. Komiya, Y. Ando. Antiferromagnets: Magnetic shape-memory effects in a crystal. Nature 418, 385(2002). CrossRef A. N. Lavrov, S. Komiya, Y. Ando. Antiferromagnets: Magnetic shape-memory effects in a crystal. Nature 418, 385(2002).
CrossRef
13.
Zurück zum Zitat S. Raasch, M. Doerr, A. Kreyssig, M. Loewenhaupt, M. Rotter, J. Hoffmann. Magnetic shape memory effect in the paramagnetic state in RCu2 (R = rare earth) antifferomagnets. Phys. Rev. B 73, 064402 (2006). CrossRef S. Raasch, M. Doerr, A. Kreyssig, M. Loewenhaupt, M. Rotter, J. Hoffmann. Magnetic shape memory effect in the paramagnetic state in RCu2 (R = rare earth) antifferomagnets. Phys. Rev. B 73, 064402 (2006).
CrossRef
14.
Zurück zum Zitat K. Ullakko. Magnetically controlled shape memory alloys: A new class of actuator materials. J. Mater. Eng. Perform. 5, 405–409, (1996). CrossRef K. Ullakko. Magnetically controlled shape memory alloys: A new class of actuator materials. J. Mater. Eng. Perform. 5, 405–409, (1996).
CrossRef
15.
Zurück zum Zitat A. N. Vasil’ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi and J. Tani. Structural and magnetic phase transitions in shape-memory alloys Ni 2+xMn 1-xGa. Phys. Rev. B 59, 1113 (1999). CrossRef A. N. Vasil’ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi and J. Tani. Structural and magnetic phase transitions in shape-memory alloys Ni
2+xMn
1-xGa. Phys. Rev. B 59, 1113 (1999).
CrossRef
16.
Zurück zum Zitat A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, E. I. Estrin. Physics Uspekhi 46(6), 559–588 (2003). CrossRef A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, E. I. Estrin. Physics Uspekhi 46(6), 559–588 (2003).
CrossRef
17.
Zurück zum Zitat K. F. Hane and T. W. Shield. Symmetry and microstructure in martensites. Philos. Mag. A: Phys. Condens. Matter 78, 1215–1252 (1998). K. F. Hane and T. W. Shield. Symmetry and microstructure in martensites. Philos. Mag. A: Phys. Condens. Matter 78, 1215–1252 (1998).
18.
Zurück zum Zitat L. Mañosa and A. Planes. Structural and magnetic phase transitions in Ni–Mn–Ga shape-memory alloys. Adv. Solid State Phys. 40, 361–374 (2000). CrossRef L. Mañosa and A. Planes. Structural and magnetic phase transitions in Ni–Mn–Ga shape-memory alloys. Adv. Solid State Phys. 40, 361–374 (2000).
CrossRef
19.
Zurück zum Zitat M. S. Wechsler, D. S. Lieberman and T. A. Read. On the Theory of the formation of martensite. Trans. AIME 197, 1503–1515, (1953). M. S. Wechsler, D. S. Lieberman and T. A. Read. On the Theory of the formation of martensite. Trans. AIME 197, 1503–1515, (1953).
20.
Zurück zum Zitat P. J. Brown, A. Y. Bargawi, J. Crangle, K.-U. Neumann and K. R. A. Ziebeck. Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni 2MnGa. J. Phys. – Cond. Mat. 11, 4715–4722 (1999). CrossRef P. J. Brown, A. Y. Bargawi, J. Crangle, K.-U. Neumann and K. R. A. Ziebeck. Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni
2MnGa. J. Phys. – Cond. Mat. 11, 4715–4722 (1999).
CrossRef
21.
Zurück zum Zitat O. Heczko, A. Sozinov, N. Lanska, O. Söderberg and K. Ullakko. Temperature variation of structure and magnetic properties of Ni–Mn–Ga magnetic shape memory alloys. J. Magn. Magn. Mater. 242–245, 1446 (2002). CrossRef O. Heczko, A. Sozinov, N. Lanska, O. Söderberg and K. Ullakko. Temperature variation of structure and magnetic properties of Ni–Mn–Ga magnetic shape memory alloys. J. Magn. Magn. Mater. 242–245, 1446 (2002).
CrossRef
22.
Zurück zum Zitat O. Heczko, P. Svec, N. Lanska and K. Ullakko. Magnetic properties of Ni–Mn–Ga ribbon prepared by rapid solidification. IEEE Trans. Mag. 38, 2841 (2002). CrossRef O. Heczko, P. Svec, N. Lanska and K. Ullakko. Magnetic properties of Ni–Mn–Ga ribbon prepared by rapid solidification. IEEE Trans. Mag. 38, 2841 (2002).
CrossRef
23.
Zurück zum Zitat Sóshin Chikazumi. Physics of Ferromagnetism, 2nd edition, Clarendon Press, Oxford (1997) ISBN 0198517769. Sóshin Chikazumi. Physics of Ferromagnetism, 2nd edition, Clarendon Press, Oxford (1997) ISBN 0198517769.
24.
Zurück zum Zitat E. Du T. De Lacherisserie. Magnetostriction: Theory and Applications of Magnetoelasticity, CRC Press (1993). E. Du T. De Lacherisserie. Magnetostriction: Theory and Applications of Magnetoelasticity, CRC Press (1993).
25.
Zurück zum Zitat R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957 (2006). CrossRef R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957 (2006).
CrossRef
26.
Zurück zum Zitat Cherechukin, A. A. et al. Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni–Mn–Fe–Ga alloy. Phys. Lett. A 291, 175 (2001). CrossRef Cherechukin, A. A. et al. Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni–Mn–Fe–Ga alloy. Phys. Lett. A 291, 175 (2001).
CrossRef
27.
Zurück zum Zitat J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch. Magnetostructural transformation in Ni–Mn–In–Co ribbons. Appl. Phys. Lett. 92, 162509 (2008). CrossRef J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch. Magnetostructural transformation in Ni–Mn–In–Co ribbons. Appl. Phys. Lett. 92, 162509 (2008).
CrossRef
28.
Zurück zum Zitat O. Heczko. Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater. 290–291. 787–794 (2005). CrossRef O. Heczko. Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater. 290–291. 787–794 (2005).
CrossRef
29.
Zurück zum Zitat L. Straka and O. Heczko. Superelastic response of Ni–Mn–Ga martensite in magnetic fields and a simple model. IEEE Trans. Magn. 39, 3402 (2003). CrossRef L. Straka and O. Heczko. Superelastic response of Ni–Mn–Ga martensite in magnetic fields and a simple model. IEEE Trans. Magn. 39, 3402 (2003).
CrossRef
30.
Zurück zum Zitat P. Müllner, V. A. Chernenko and G. Kostorz. Stress-induced twin rearrangement resulting in change of magnetization in a Ni–Mn–Ga ferromagnetic martensite. Scripta Mater 49, 129 (2003). CrossRef P. Müllner, V. A. Chernenko and G. Kostorz. Stress-induced twin rearrangement resulting in change of magnetization in a Ni–Mn–Ga ferromagnetic martensite. Scripta Mater 49, 129 (2003).
CrossRef
31.
Zurück zum Zitat X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect mediated reversible domain switching. Nat. Mater. 3, 91 (2004). CrossRef X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect mediated reversible domain switching. Nat. Mater. 3, 91 (2004).
CrossRef
32.
Zurück zum Zitat A. L. Roytburd, T. S. Kim, Quanmin Su, J. Slutsker and M. Wuttig. Martensitic transformation in constrained films. Acta Mater. 46(14), 5095–5107 (1998). CrossRef A. L. Roytburd, T. S. Kim, Quanmin Su, J. Slutsker and M. Wuttig. Martensitic transformation in constrained films. Acta Mater. 46(14), 5095–5107 (1998).
CrossRef
33.
Zurück zum Zitat H. H. Liebermann and C. D. Graham Jr. Plastic and magnetoplastic deformation of Dy single crystals. Acta Mettalurgica 25, 715 (1977). CrossRef H. H. Liebermann and C. D. Graham Jr. Plastic and magnetoplastic deformation of Dy single crystals. Acta Mettalurgica 25, 715 (1977).
CrossRef
34.
Zurück zum Zitat P. Müllner, V. A. Chernenko and G. Kostorz. Large cyclic magnetic-field-induced deformation in orthorhombic (14 M) Ni–Mn–Ga martensite. J. Appl. Phys. 95, 1531 (2004). CrossRef P. Müllner, V. A. Chernenko and G. Kostorz. Large cyclic magnetic-field-induced deformation in orthorhombic (14 M) Ni–Mn–Ga martensite. J. Appl. Phys. 95, 1531 (2004).
CrossRef
35.
Zurück zum Zitat J. J. Rhyne, S. Foner, E. J. McNiff, Jr. and R. Doclo. Rare earth metal single crystals. I. High-field properties of Dy, Er, Ho, Tb, and Gd. J. Appl. Phys. 39, 892 (1968). CrossRef J. J. Rhyne, S. Foner, E. J. McNiff, Jr. and R. Doclo. Rare earth metal single crystals. I. High-field properties of Dy, Er, Ho, Tb, and Gd. J. Appl. Phys. 39, 892 (1968).
CrossRef
36.
Zurück zum Zitat R. D. James and M. Wuttig. Magnetostriction of martensite. Phi. Mag. A 77, 1273 (1998). CrossRef R. D. James and M. Wuttig. Magnetostriction of martensite. Phi. Mag. A 77, 1273 (1998).
CrossRef
37.
Zurück zum Zitat T. Kakeshita, et al. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502–1504 (2000). CrossRef T. Kakeshita, et al. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502–1504 (2000).
CrossRef
38.
Zurück zum Zitat J. Pons, et al. Ferromagnetic SMA’s: Alternatives to Ni-Mn-Ga. Mat. Sci. Eng. A 481, 57 (2008). J. Pons, et al. Ferromagnetic SMA’s: Alternatives to Ni-Mn-Ga. Mat. Sci. Eng. A 481, 57 (2008).
39.
Zurück zum Zitat T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi and K. Kishio. Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. J. Appl. Phys. 93, 8647–8649 (2003). CrossRef T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi and K. Kishio. Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. J. Appl. Phys. 93, 8647–8649 (2003).
CrossRef
40.
Zurück zum Zitat Y. Sutou, et al. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358–4360 (2004). CrossRef Y. Sutou, et al. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358–4360 (2004).
CrossRef
41.
Zurück zum Zitat J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch. Martensitic transformation and magnetic properties in NiFeGaCo magnetic shape memory alloys. Acta Materialia 56, Nr. 13, S. 3177–3186 (2008). CrossRef J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch. Martensitic transformation and magnetic properties in NiFeGaCo magnetic shape memory alloys. Acta Materialia 56, Nr. 13, S. 3177–3186 (2008).
CrossRef
42.
Zurück zum Zitat K. Oikawa, et al. Promising ferromagnetic Ni–Co-Al shape memory alloy system. Appl. Phys. Lett. 79, 3290–3292 (2001). CrossRef K. Oikawa, et al. Promising ferromagnetic Ni–Co-Al shape memory alloy system. Appl. Phys. Lett. 79, 3290–3292 (2001).
CrossRef
43.
Zurück zum Zitat K. Oikawa, et al. Magnetic and martensitic phase transitions in ferromagnetic Ni–Ga–Fe shape memory alloys. Appl. Phys. Lett. 81, 5201–5203 (2002). CrossRef K. Oikawa, et al. Magnetic and martensitic phase transitions in ferromagnetic Ni–Ga–Fe shape memory alloys. Appl. Phys. Lett. 81, 5201–5203 (2002).
CrossRef
44.
Zurück zum Zitat H. Morito, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida and K. Oikawa. Magnetic-field-induced strain of Fe–Ni–Ga in single-variant state. Appl. Phys. Lett. 83, 4993 (2003). CrossRef H. Morito, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida and K. Oikawa. Magnetic-field-induced strain of Fe–Ni–Ga in single-variant state. Appl. Phys. Lett. 83, 4993 (2003).
CrossRef
45.
Zurück zum Zitat H. Morito, A. Fujita, K. Oikawa, K. Ishida, K. Fukamichi and R. Kainuma. Stress-assisted magnetic-field-induced strain in Ni–Fe–Ga–Co ferromagnetic shape memory alloys. Appl. Phys. Lett. 90, 062505 (2007). CrossRef H. Morito, A. Fujita, K. Oikawa, K. Ishida, K. Fukamichi and R. Kainuma. Stress-assisted magnetic-field-induced strain in Ni–Fe–Ga–Co ferromagnetic shape memory alloys. Appl. Phys. Lett. 90, 062505 (2007).
CrossRef
46.
Zurück zum Zitat J. G. Booth. Ch. 3, Heusler alloys in Ferromagnetic Materials Vol. 4, edited by E. P. Wohlfarth and K. H. J. Buschow. Elsevier, Amsterdam, (1988). J. G. Booth. Ch. 3, Heusler alloys in Ferromagnetic Materials Vol. 4, edited by E. P. Wohlfarth and K. H. J. Buschow. Elsevier, Amsterdam, (1988).
47.
Zurück zum Zitat P. J. Webster. Heusler alloys. Contemporary Physics 10, 559–577 (1969). CrossRef P. J. Webster. Heusler alloys. Contemporary Physics 10, 559–577 (1969).
CrossRef
48.
Zurück zum Zitat P. J. Webster, K. R. A. Ziebeck, S. L. Town and M. S. Peak. Magnetic order and phase transformation in Ni 2MnGa alloy. Philos. Mag. B: Phys. Condens. Matter: Statistical Mechanics, Electronic, Optical and Magnetic Properties 49, 295–310 (1984). P. J. Webster, K. R. A. Ziebeck, S. L. Town and M. S. Peak. Magnetic order and phase transformation in Ni
2MnGa alloy. Philos. Mag. B: Phys. Condens. Matter: Statistical Mechanics, Electronic, Optical and Magnetic Properties 49, 295–310 (1984).
49.
Zurück zum Zitat V. V. Khovailo, T. Takagi, A. N. Vasilev, H. Miki, M. Matsumoto and R. Kainuma. On order-disorder (L21·B2’) phase transition in Ni 2+xMn 1-xGa Heusler alloys. Physica Status Solidi (a) 183, R1 (2001). CrossRef V. V. Khovailo, T. Takagi, A. N. Vasilev, H. Miki, M. Matsumoto and R. Kainuma. On order-disorder (L21·B2’) phase transition in Ni
2+xMn
1-xGa Heusler alloys. Physica Status Solidi (a) 183, R1 (2001).
CrossRef
50.
Zurück zum Zitat P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K.-U. Neumann, B. Ouladdiaf and K. R. A. Ziebeck. The crystal structure and phase transitions of the magnetic shape memory compound Ni 2MnGa. J. Phys.: Condens. Mat. 14, 10159 (2002). CrossRef P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K.-U. Neumann, B. Ouladdiaf and K. R. A. Ziebeck. The crystal structure and phase transitions of the magnetic shape memory compound Ni
2MnGa. J. Phys.: Condens. Mat. 14, 10159 (2002).
CrossRef
51.
Zurück zum Zitat M. Richard, J. Feuchtwanger, D. Schlagel, T. Lograsso, S. M. Allen and R. C. O’Handley. Crystal structure and transformation behavior of Ni–Mn–Ga martensites. Scripta Materialia 54, 1797 (2006). CrossRef M. Richard, J. Feuchtwanger, D. Schlagel, T. Lograsso, S. M. Allen and R. C. O’Handley. Crystal structure and transformation behavior of Ni–Mn–Ga martensites. Scripta Materialia 54, 1797 (2006).
CrossRef
52.
Zurück zum Zitat M. Kreissl, K. U. Neumann, T. Stephens and K. R. A. Ziebeck. The influence of atomic order on the magnetic and structural properties of the ferromagnetic shape memory compound Ni2MnGa. J. Phys. 15, 3831 (2003). M. Kreissl, K. U. Neumann, T. Stephens and K. R. A. Ziebeck. The influence of atomic order on the magnetic and structural properties of the ferromagnetic shape memory compound Ni2MnGa. J. Phys. 15, 3831 (2003).
53.
Zurück zum Zitat U. Gaitzsch, M. Potschke, S. Roth, N. Mattern, B. Rellinghaus, L. Schultz. Structure formation in martensitic Ni 50Mn 30Ga 20 MSM alloy. J. Alloys Comp. 443, 99 (2007). CrossRef U. Gaitzsch, M. Potschke, S. Roth, N. Mattern, B. Rellinghaus, L. Schultz. Structure formation in martensitic Ni
50Mn
30Ga
20 MSM alloy. J. Alloys Comp. 443, 99 (2007).
CrossRef
54.
Zurück zum Zitat V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev and A. N. Vasiliev. Phase transitions in Ni 2+xMn 1-xGa with a high Ni excess. Phys. Rev. B 72, 224408 (2005). CrossRef V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev and A. N. Vasiliev. Phase transitions in Ni
2+xMn
1-xGa with a high Ni excess. Phys. Rev. B 72, 224408 (2005).
CrossRef
55.
Zurück zum Zitat G. D. Liu, J. L. Chen, Z. H. Liu, X. F. Dai, G. H. Wu, B. Zhang and X. X. Zhang. Martensitic transformation and shape memory effect in a ferromagnetic shape memory alloy: Mn 2NiGa. Appl. Phys. Lett. 87, 262504 (2005). CrossRef G. D. Liu, J. L. Chen, Z. H. Liu, X. F. Dai, G. H. Wu, B. Zhang and X. X. Zhang. Martensitic transformation and shape memory effect in a ferromagnetic shape memory alloy: Mn
2NiGa. Appl. Phys. Lett. 87, 262504 (2005).
CrossRef
56.
Zurück zum Zitat Chernenko V. A., Segui C., Cesari E., Pons J. and Kokorin V. V. Sequence of martensitic transformations in Ni–Mn–Ga alloys. Phys. Rev. B 57, 2659–2662 (1998). CrossRef Chernenko V. A., Segui C., Cesari E., Pons J. and Kokorin V. V. Sequence of martensitic transformations in Ni–Mn–Ga alloys. Phys. Rev. B 57, 2659–2662 (1998).
CrossRef
57.
Zurück zum Zitat V. A. Chernenko, E. Cesari, V. V. Khovailo, J. Pons, C. Segui and T. Tagaki. Intermartensitic phase transformations in Ni–Mn–Ga studied under magnetic field. J. Magn. Magn. Mater. 290, 871 (2005). CrossRef V. A. Chernenko, E. Cesari, V. V. Khovailo, J. Pons, C. Segui and T. Tagaki. Intermartensitic phase transformations in Ni–Mn–Ga studied under magnetic field. J. Magn. Magn. Mater. 290, 871 (2005).
CrossRef
58.
Zurück zum Zitat N. Lanska, O. Söderberg, A. Sozinov, Y. Ge, K. Ullakko and V. K. Lindroos. Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J. Appl. Phys. 95, 8074 (2004). CrossRef N. Lanska, O. Söderberg, A. Sozinov, Y. Ge, K. Ullakko and V. K. Lindroos. Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J. Appl. Phys. 95, 8074 (2004).
CrossRef
59.
Zurück zum Zitat X. Jin, M. Marioni, D. Bono, S. M. Allen, R. C. O’Handley and T. Y. Hsu. Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration. J. Appl. Phys. 91, 8222 (2002). CrossRef X. Jin, M. Marioni, D. Bono, S. M. Allen, R. C. O’Handley and T. Y. Hsu. Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration. J. Appl. Phys. 91, 8222 (2002).
CrossRef
60.
Zurück zum Zitat P. Entel, V. D. Buchelnikov, V. V. Khovailo, et al. Modelling the phase diagram of magnetic shape memory Heusler alloys. J. Phys. D-Appl. Phys. 39(5), 865 (2006). CrossRef P. Entel, V. D. Buchelnikov, V. V. Khovailo, et al. Modelling the phase diagram of magnetic shape memory Heusler alloys. J. Phys. D-Appl. Phys. 39(5), 865 (2006).
CrossRef
61.
Zurück zum Zitat L. Manosa, A. G. Comas, E. Obrad´o and A. Planes. Premartensitic phase transformation in the Ni 2MnGa shape memory alloy. Mat. Sci. Eng. A 273–276, 329–332 (1999). CrossRef L. Manosa, A. G. Comas, E. Obrad´o and A. Planes. Premartensitic phase transformation in the Ni
2MnGa shape memory alloy. Mat. Sci. Eng. A 273–276, 329–332 (1999).
CrossRef
62.
Zurück zum Zitat L. Manosa, A. Gonzalez-Comas, E. Obradó, A. Planes, V. A. Chernenko, V. V. Kokorin and E. Cesari. Anomalies related to the TA2-phonon-mode condensation in the Heusler Ni2MnGa alloy. Phys. Rev. B, 55(17), 11068, (1997). CrossRef L. Manosa, A. Gonzalez-Comas, E. Obradó, A. Planes, V. A. Chernenko, V. V. Kokorin and E. Cesari. Anomalies related to the TA2-phonon-mode condensation in the Heusler Ni2MnGa alloy. Phys. Rev. B, 55(17), 11068, (1997).
CrossRef
63.
Zurück zum Zitat L. Manosa, A. Planes, J. Zarestky, T. A. Lograsso, D. L. Schlagel and C. Stassis. Phonon softening in Ni–Mn–Ga alloys. Phys. Rev. B, 64, 024305 (2001). CrossRef L. Manosa, A. Planes, J. Zarestky, T. A. Lograsso, D. L. Schlagel and C. Stassis. Phonon softening in Ni–Mn–Ga alloys. Phys. Rev. B, 64, 024305 (2001).
CrossRef
64.
Zurück zum Zitat V. V. Martynov and V. V. Kokorin. The crystal structure of thermally- and stress-induced Martensites in Ni2MnGa single crystals. J. Phys. III France 2, 739 (1992). CrossRef V. V. Martynov and V. V. Kokorin. The crystal structure of thermally- and stress-induced Martensites in Ni2MnGa single crystals. J. Phys. III France 2, 739 (1992).
CrossRef
65.
Zurück zum Zitat V. A. Chernenko, V. L’Vov, J. Pons and E. Césari. Superelasticity in high-temperature Ni–Mn–Ga alloys. J. Appl. Phys. 93, 2394–2399 (2003). CrossRef V. A. Chernenko, V. L’Vov, J. Pons and E. Césari. Superelasticity in high-temperature Ni–Mn–Ga alloys. J. Appl. Phys. 93, 2394–2399 (2003).
CrossRef
66.
Zurück zum Zitat O. Söderberg, K. Koho, T. Sammi, X. W. Liu, A. Sozinov, N. Lanska and V. K. Lindroos. Effect of the selected alloying on Ni–Mn–Ga alloys. Mat. Sci. Eng. A 378/1–2, 386–393 (2004). O. Söderberg, K. Koho, T. Sammi, X. W. Liu, A. Sozinov, N. Lanska and V. K. Lindroos. Effect of the selected alloying on Ni–Mn–Ga alloys. Mat. Sci. Eng. A 378/1–2, 386–393 (2004).
67.
Zurück zum Zitat G. H. Wu, W. H. Wang, J. L. Chen, L. Ao, Z. H. Liu, W. S. Zhan, T. Liang and H. B. Xu. Magnetic properties and shape memory of Fe-doped Ni 52Mn 24Ga 24 single crystals. Appl. Phys. Lett. 80, 634 (2002). CrossRef G. H. Wu, W. H. Wang, J. L. Chen, L. Ao, Z. H. Liu, W. S. Zhan, T. Liang and H. B. Xu. Magnetic properties and shape memory of Fe-doped Ni
52Mn
24Ga
24 single crystals. Appl. Phys. Lett. 80, 634 (2002).
CrossRef
68.
Zurück zum Zitat Y. Ge, O. Söderberg, N. Lanska, A. Sozinov, K. Ullakko and V. K. Lindroos. Crystal structure of three NiMnGa alloys in powder and bulk materials. J. de Physique IV 112, 921 (2003). CrossRef Y. Ge, O. Söderberg, N. Lanska, A. Sozinov, K. Ullakko and V. K. Lindroos. Crystal structure of three NiMnGa alloys in powder and bulk materials. J. de Physique IV 112, 921 (2003).
CrossRef
69.
Zurück zum Zitat J. Pons, V. A. Chernenko, R. Santamarta and E. Césari. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Materialia 48, 3027–3038 (2000). CrossRef J. Pons, V. A. Chernenko, R. Santamarta and E. Césari. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Materialia 48, 3027–3038 (2000).
CrossRef
70.
Zurück zum Zitat B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, D. Shindo and K. Itagaki. Low temperature crystal structure of Ni–Mn–Ga alloys. J. Alloys Comp. 290, 137–143 (1999). CrossRef B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, D. Shindo and K. Itagaki. Low temperature crystal structure of Ni–Mn–Ga alloys. J. Alloys Comp. 290, 137–143 (1999).
CrossRef
71.
Zurück zum Zitat A. T. Zayak, P. Entel, J. Enkovaara, A. Ayuela and R. M. Nieminen. First principles investigations of homogeneous lattice-distortive strain and shuffles in Ni 2MnGa. J. Phys.: Condens. Mat. 15, 159–164 (2003). CrossRef A. T. Zayak, P. Entel, J. Enkovaara, A. Ayuela and R. M. Nieminen. First principles investigations of homogeneous lattice-distortive strain and shuffles in Ni
2MnGa. J. Phys.: Condens. Mat. 15, 159–164 (2003).
CrossRef
72.
Zurück zum Zitat K. Zasimchuk, V. V. Kokorin, V. V. Martynov, A. V. Tkachenko and V. A. Chernenko. Crystal structure of martensite in Heusler alloy Ni2MnGa. Phys. Met. Metall. 69, 104 (1990) K. Zasimchuk, V. V. Kokorin, V. V. Martynov, A. V. Tkachenko and V. A. Chernenko. Crystal structure of martensite in Heusler alloy Ni2MnGa. Phys. Met. Metall. 69, 104 (1990)
73.
Zurück zum Zitat J. Pons, R. Santamarta, V. A. Chernenko and E. Césari. HREM study of different martensitic phases in Ni–Mn–Ga alloys. Mater. Chem. Phys. 81, 457 (2003). J. Pons, R. Santamarta, V. A. Chernenko and E. Césari. HREM study of different martensitic phases in Ni–Mn–Ga alloys. Mater. Chem. Phys. 81, 457 (2003).
74.
Zurück zum Zitat J. Pons, R. Santamarta, E. Césari and V. A. Chernenko. Martensitic structures in Ni–Mn–Ga. Appl. Cryst. 18, 186–199 (2001). J. Pons, R. Santamarta, E. Césari and V. A. Chernenko. Martensitic structures in Ni–Mn–Ga. Appl. Cryst. 18, 186–199 (2001).
75.
Zurück zum Zitat A. Zheludev, S. M. Shapiro P. Wochner and L. E. Tanner. Precursor effects and premartensitic transformation in Ni2MnGa. Phys. Rev. B 54, 15045–15050 (1996). CrossRef A. Zheludev, S. M. Shapiro P. Wochner and L. E. Tanner. Precursor effects and premartensitic transformation in Ni2MnGa. Phys. Rev. B 54, 15045–15050 (1996).
CrossRef
76.
Zurück zum Zitat A. Ayuela, J. Enkovaara and R. M. Nieminen. Ab initio study of tetragonal variants in Ni2MnGa alloy. J. Phys. – Cond. Matt. 14, 5325 (2002). CrossRef A. Ayuela, J. Enkovaara and R. M. Nieminen. Ab initio study of tetragonal variants in Ni2MnGa alloy. J. Phys. – Cond. Matt. 14, 5325 (2002).
CrossRef
77.
Zurück zum Zitat J. Enkovaara, A. Ayuela, A. T. Zayak, P. Entel, L. Nordstrom, M. Dube, J. Jalkanen, J. Impola and R. M. Nieminen. Magnetically driven shape memory alloys. Mater. Sci. Eng. A 378, 52 (2004). CrossRef J. Enkovaara, A. Ayuela, A. T. Zayak, P. Entel, L. Nordstrom, M. Dube, J. Jalkanen, J. Impola and R. M. Nieminen. Magnetically driven shape memory alloys. Mater. Sci. Eng. A 378, 52 (2004).
CrossRef
78.
Zurück zum Zitat M. Thomas, O. Heczko, J. Buschbeck, U. K. Rößler, J. McCord, N. Scheerbaum, L. Schultz and S. Fähler. Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO (100). New J. Phys. 10, 023040 (2008). CrossRef M. Thomas, O. Heczko, J. Buschbeck, U. K. Rößler, J. McCord, N. Scheerbaum, L. Schultz and S. Fähler. Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO (100). New J. Phys. 10, 023040 (2008).
CrossRef
79.
Zurück zum Zitat L. Straka, O. Heczko, V. Novak and N. Lanska. Study of austenite-martensite transformation in Ni–Mn–Ga magnetic shape memory alloy. J. de Physique IV – Proceedings 112, 911 (2003). CrossRef L. Straka, O. Heczko, V. Novak and N. Lanska. Study of austenite-martensite transformation in Ni–Mn–Ga magnetic shape memory alloy. J. de Physique IV – Proceedings 112, 911 (2003).
CrossRef
80.
Zurück zum Zitat T. Kanomata, K. Shirakawa and T. Kaneko. Effect of hydrostatic pressure on the Curie temperature of the Heusler alloys nickel-manganese-Z (Ni2MnZ) (Z = aluminum, gallium, indium, tin and antimony). J. Magn. Magn. Mater. 65, 76–82 (1987). CrossRef T. Kanomata, K. Shirakawa and T. Kaneko. Effect of hydrostatic pressure on the Curie temperature of the Heusler alloys nickel-manganese-Z (Ni2MnZ) (Z = aluminum, gallium, indium, tin and antimony). J. Magn. Magn. Mater. 65, 76–82 (1987).
CrossRef
81.
Zurück zum Zitat J. Enkovaara, O. Heczko, A. Ayuela and R. M. Nieminen. Coexistence of ferromagnetic and antiferromagnetic order in Mn–doped Ni2MnGa. Phys. Rev. B 67, 212405 (2003). CrossRef J. Enkovaara, O. Heczko, A. Ayuela and R. M. Nieminen. Coexistence of ferromagnetic and antiferromagnetic order in Mn–doped Ni2MnGa. Phys. Rev. B 67, 212405 (2003).
CrossRef
82.
Zurück zum Zitat O. Heczko, L. Straka and K. Ullakko. Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni–Mn–Ga alloys. J. de Physique IV, 112, 959 (2003). CrossRef O. Heczko, L. Straka and K. Ullakko. Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni–Mn–Ga alloys. J. de Physique IV, 112, 959 (2003).
CrossRef
83.
Zurück zum Zitat R. Tickle and R. D. James. Magnetic and magnetomechanical properties of Ni 2MnGa. J. Magn. Magn. Mat. 195, 627 (1999). CrossRef R. Tickle and R. D. James. Magnetic and magnetomechanical properties of Ni
2MnGa. J. Magn. Magn. Mat. 195, 627 (1999).
CrossRef
84.
Zurück zum Zitat L. Straka and O. Heczko. Magnetic anisotropy in Ni–Mn–Ga martensites. J. Appl. Phys. 92, 8636 (2003). CrossRef L. Straka and O. Heczko. Magnetic anisotropy in Ni–Mn–Ga martensites. J. Appl. Phys. 92, 8636 (2003).
CrossRef
85.
Zurück zum Zitat L. Straka, O. Heczko and N. Lanska. Magnetic properties of various martensitic phases in Ni–Mn–Ga alloy. IEEE Trans. Magn. 38, 2835–2837 (2002). CrossRef L. Straka, O. Heczko and N. Lanska. Magnetic properties of various martensitic phases in Ni–Mn–Ga alloy. IEEE Trans. Magn. 38, 2835–2837 (2002).
CrossRef
86.
Zurück zum Zitat F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra and Righi L. Composition and temperature dependence of the magnetocrystalline anisotropy in Ni2+xMn1+yGa1+z (x+y+z=0) Heusler alloys. Appl. Phys. Lett. 81, 4032 (2002). CrossRef F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra and Righi L. Composition and temperature dependence of the magnetocrystalline anisotropy in Ni2+xMn1+yGa1+z (x+y+z=0) Heusler alloys. Appl. Phys. Lett. 81, 4032 (2002).
CrossRef
87.
Zurück zum Zitat J. Enkovaara, A. Ayuela, L. Nordstrom and R. M. Nieminen. Structural, thermal, and magnetic properties of Ni 2MnGa. J. Appl. Phys. 91, 7798 (2002). CrossRef J. Enkovaara, A. Ayuela, L. Nordstrom and R. M. Nieminen. Structural, thermal, and magnetic properties of Ni
2MnGa. J. Appl. Phys. 91, 7798 (2002).
CrossRef
88.
Zurück zum Zitat A. Sozinov, A. A. Likhachev and K. Ullakko. Magnetic and magnetomechanical properties of Ni–Mn–Ga alloys with easy axis and easy plane of magnetization. In: C.S. Lynch (Ed.) Proceedings of SPIE, 4333, 189–196 (2001). A. Sozinov, A. A. Likhachev and K. Ullakko. Magnetic and magnetomechanical properties of Ni–Mn–Ga alloys with easy axis and easy plane of magnetization. In: C.S. Lynch (Ed.) Proceedings of SPIE, 4333, 189–196 (2001).
89.
Zurück zum Zitat O. Heczko and L. Straka. Compositional dependence of structure, magnetization and magnetic anisotropy in Ni–Mn–Ga magnetic shape memory alloys, J. Magn. Magn. Mat. 272–276, 2045 (2004). CrossRef O. Heczko and L. Straka. Compositional dependence of structure, magnetization and magnetic anisotropy in Ni–Mn–Ga magnetic shape memory alloys, J. Magn. Magn. Mat. 272–276, 2045 (2004).
CrossRef
90.
Zurück zum Zitat O. Heczko and L. Straka. Determination of ordinary magnetostriction in Ni–Mn–Ga magnetic shape memory alloy, J. Magn. Magn. Mat. 290–291, 846 (2005). CrossRef O. Heczko and L. Straka. Determination of ordinary magnetostriction in Ni–Mn–Ga magnetic shape memory alloy, J. Magn. Magn. Mat. 290–291, 846 (2005).
CrossRef
91.
Zurück zum Zitat O. Heczko, L. Straka, I. Aaltio and S.-P. Hannula. Strain and concurrent magnetization changes in magnetic shape memory Ni–Mn–Ga single crystals – experiment and model. Mat. Sci. Eng. A 481–482, 283 (2008). CrossRef O. Heczko, L. Straka, I. Aaltio and S.-P. Hannula. Strain and concurrent magnetization changes in magnetic shape memory Ni–Mn–Ga single crystals – experiment and model. Mat. Sci. Eng. A 481–482, 283 (2008).
CrossRef
92.
Zurück zum Zitat O. Heczko, L. Straka and S.-P. Hannula. Stress dependence of magnetic shape memory effect and its model. Mat. Sci. Eng. A 438–440, 1003–1006 (2006). CrossRef O. Heczko, L. Straka and S.-P. Hannula. Stress dependence of magnetic shape memory effect and its model. Mat. Sci. Eng. A 438–440, 1003–1006 (2006).
CrossRef
93.
Zurück zum Zitat O. Heczko, K. Jurek and K. Ullakko. Magnetic properties and magnetic domain structure of magnetic shape memory Ni–Mn–Ga alloy. J. Magn. Magn. Mat. 226–230, 996–998 (2001). CrossRef O. Heczko, K. Jurek and K. Ullakko. Magnetic properties and magnetic domain structure of magnetic shape memory Ni–Mn–Ga alloy. J. Magn. Magn. Mat. 226–230, 996–998 (2001).
CrossRef
94.
Zurück zum Zitat Y. Ge, O. Heczko, O. Söderberg and V. K. Lindroos. Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. J. Appl. Phys. 96, 2159 (2004). CrossRef Y. Ge, O. Heczko, O. Söderberg and V. K. Lindroos. Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. J. Appl. Phys. 96, 2159 (2004).
CrossRef
95.
Zurück zum Zitat Y. Ge, O. Heczko, O. Söderberg and S.-P. Hannula. Direct optical observation of magnetic domains in Ni–Mn–Ga martensite. Appl. Phys. Lett. 89, 082502 (2006). CrossRef Y. Ge, O. Heczko, O. Söderberg and S.-P. Hannula. Direct optical observation of magnetic domains in Ni–Mn–Ga martensite. Appl. Phys. Lett. 89, 082502 (2006).
CrossRef
96.
Zurück zum Zitat Y. W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schäfer, L. Schultz and J. McCord. Absence of magnetic domain wall motion during magnetic field induced twin boundary motion in bulk magnetic shape memory alloys. Appl. Phys. Lett. 90, 192504 (2007) CrossRef Y. W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schäfer, L. Schultz and J. McCord. Absence of magnetic domain wall motion during magnetic field induced twin boundary motion in bulk magnetic shape memory alloys. Appl. Phys. Lett. 90, 192504 (2007)
CrossRef
97.
Zurück zum Zitat H. D. Chopra, C. Ji and V. V. Kokorin. Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys. Phys. Rev. B 61, R14913 (2000). CrossRef H. D. Chopra, C. Ji and V. V. Kokorin. Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys. Phys. Rev. B 61, R14913 (2000).
CrossRef
98.
Zurück zum Zitat D. I. Paul, W. McGehee, R. C. O’Handley and M. Richard. Ferromagnetic shape memory alloys: A theoretical approach. J. Appl. Phys. 101, 123917 (2007). CrossRef D. I. Paul, W. McGehee, R. C. O’Handley and M. Richard. Ferromagnetic shape memory alloys: A theoretical approach. J. Appl. Phys. 101, 123917 (2007).
CrossRef
99.
Zurück zum Zitat V. Soolshenko, N. Lanska and K. Ullakko. Structure and twinning stress of martensites in non-stoichiometric Ni2MnGa single crystal. J. de Physique IV France 112, 947 (2003). CrossRef V. Soolshenko, N. Lanska and K. Ullakko. Structure and twinning stress of martensites in non-stoichiometric Ni2MnGa single crystal. J. de Physique IV France 112, 947 (2003).
CrossRef
100.
Zurück zum Zitat L. Dai, J. Cullen and M. Wuttig. Intermartensitic transformation in a NiMnGa alloy. J. Appl. Phys. 95, 6957–6959 (2004). L. Dai, J. Cullen and M. Wuttig. Intermartensitic transformation in a NiMnGa alloy. J. Appl. Phys. 95, 6957–6959 (2004).
101.
Zurück zum Zitat I. Aaltio, O. Heczko, O. Söderberg and S.-P- Hannula, ch. 20. Shape Memory alloys and Effects: Types, Functions, Modeling and Applications (Magnetically Controlled Shape Memory Alloys). In M. Schwartz (Ed.), Smart Materials, CRC Press, Taylor and Francis Group, LLC (2009). I. Aaltio, O. Heczko, O. Söderberg and S.-P- Hannula, ch. 20. Shape Memory alloys and Effects: Types, Functions, Modeling and Applications (Magnetically Controlled Shape Memory Alloys). In M. Schwartz (Ed.), Smart Materials, CRC Press, Taylor and Francis Group, LLC (2009).
102.
Zurück zum Zitat M. Stipcich, L. Manosa, A. Planes, M. Morin, J. Zarestky, T. A. Lograsso and C. Stassis. Elastic constants of Ni–Mn–Ga magnetic shape memory alloys. Phys. Rev B, 70, 054115 (2004). CrossRef M. Stipcich, L. Manosa, A. Planes, M. Morin, J. Zarestky, T. A. Lograsso and C. Stassis. Elastic constants of Ni–Mn–Ga magnetic shape memory alloys. Phys. Rev B, 70, 054115 (2004).
CrossRef
103.
Zurück zum Zitat L. Straka, V. Novak, M. Landa and O. Heczko. Acoustic emission of Ni–Mn–Ga magnetic shape memory alloy in different straining modes. Mat. Sci. Eng. A 374, 263–269 (2004). CrossRef L. Straka, V. Novak, M. Landa and O. Heczko. Acoustic emission of Ni–Mn–Ga magnetic shape memory alloy in different straining modes. Mat. Sci. Eng. A 374, 263–269 (2004).
CrossRef
104.
Zurück zum Zitat P. Molnar, P. Sittner, P. Lukas, S-P. Hannula and O. Heczko. Stress-induced martensite variant reorientation in magnetic shape memory Ni–Mn–Ga single crystal studied by neutron diffraction. Smart Mater. Struct. 17, 035014 (5 pp) (2008). CrossRef P. Molnar, P. Sittner, P. Lukas, S-P. Hannula and O. Heczko. Stress-induced martensite variant reorientation in magnetic shape memory Ni–Mn–Ga single crystal studied by neutron diffraction. Smart Mater. Struct. 17, 035014 (5 pp) (2008).
CrossRef
105.
Zurück zum Zitat P. Molnar, P. Sittner, V. Novak and O. Heczko. Magnetic field induced reorientation and mechanical training process in NiMnGa single crystal, Proc. ICOMAT 2008, Santa Fe, to be published in TMR. P. Molnar, P. Sittner, V. Novak and O. Heczko. Magnetic field induced reorientation and mechanical training process in NiMnGa single crystal, Proc. ICOMAT 2008, Santa Fe, to be published in TMR.
106.
Zurück zum Zitat O. Heczko, A. Soroka and S.-P. Hannula. Magnetic shape memory effect in thin foils. Appl. Phys. Lett. 93, 022503, (2008). O. Heczko, A. Soroka and S.-P. Hannula. Magnetic shape memory effect in thin foils. Appl. Phys. Lett. 93, 022503, (2008).
107.
Zurück zum Zitat P. Molnar, P. Sittner, V. Novak, J. Prokleska, V. Sechovsky, B. Ouladdiaf, S. P. Hanulla and O. Heczko. In situ neutron diffraction study of magnetic field induced martensite reorientation in Ni–Mn–Ga under constant stress. J. Phys.: Condens. Mat. 20, 104224 (2008). CrossRef P. Molnar, P. Sittner, V. Novak, J. Prokleska, V. Sechovsky, B. Ouladdiaf, S. P. Hanulla and O. Heczko. In situ neutron diffraction study of magnetic field induced martensite reorientation in Ni–Mn–Ga under constant stress. J. Phys.: Condens. Mat. 20, 104224 (2008).
CrossRef
108.
Zurück zum Zitat O. Heczko, K. Prokes and S-P. Hannula. Neutron diffraction studies of magnetic shape memory Ni–Mn–Ga single crystal. J. Magn. Magn. Mater. 316, 386 (2007). CrossRef O. Heczko, K. Prokes and S-P. Hannula. Neutron diffraction studies of magnetic shape memory Ni–Mn–Ga single crystal. J. Magn. Magn. Mater. 316, 386 (2007).
CrossRef
109.
Zurück zum Zitat M. L. Richard. Systematic analysis of the crystal structure, chemical ordering and microstructure of Ni–Mn–Ga ferromagnetic shape memory alloys. Ph.D. thesis, MIT (2005). M. L. Richard. Systematic analysis of the crystal structure, chemical ordering and microstructure of Ni–Mn–Ga ferromagnetic shape memory alloys. Ph.D. thesis, MIT (2005).
110.
Zurück zum Zitat L. Dai, M. Wuttig and E. Pagounis. Twin stabilization in a ferromagnetic shape memory alloy. Scripta Materialia 55, 807–810 (2006). CrossRef L. Dai, M. Wuttig and E. Pagounis. Twin stabilization in a ferromagnetic shape memory alloy. Scripta Materialia 55, 807–810 (2006).
CrossRef
111.
Zurück zum Zitat L. Straka, O. Heczko, H. Hänninen. Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment. Acta Materialia 56, 5492–5499 (2008). L. Straka, O. Heczko, H. Hänninen. Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment. Acta Materialia 56, 5492–5499 (2008).
112.
Zurück zum Zitat D. I. Paul, J. Marquiss and D. Quattrochi. Theory of magnetization: Twin boundary interaction in ferromagnetic shape memory alloys. J. Appl. Phys. 93, 4561 (2003). CrossRef D. I. Paul, J. Marquiss and D. Quattrochi. Theory of magnetization: Twin boundary interaction in ferromagnetic shape memory alloys. J. Appl. Phys. 93, 4561 (2003).
CrossRef
113.
Zurück zum Zitat R. C. O’Handley, D. I. Paul, M. Marioni, C. P. Henry, M. Richard, P. G. Tello and S. M. Allen. Micromagnetic and micromechanics of Ni–Mn–Ga actuation. J. Phys. IV France, 112, 973 (2003). CrossRef R. C. O’Handley, D. I. Paul, M. Marioni, C. P. Henry, M. Richard, P. G. Tello and S. M. Allen. Micromagnetic and micromechanics of Ni–Mn–Ga actuation. J. Phys. IV France, 112, 973 (2003).
CrossRef
114.
Zurück zum Zitat E. V. Gomonaj and V. A. Lvov. Martensitic phase transition with two-component order parameter in a stressed cubic crystal. Phase Transitions 41, 9 (1994). CrossRef E. V. Gomonaj and V. A. Lvov. Martensitic phase transition with two-component order parameter in a stressed cubic crystal. Phase Transitions 41, 9 (1994).
CrossRef
115.
Zurück zum Zitat A. A. Likhachev and K. Ullakko. Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy. Phys. Lett. A 275, 142 (2000). CrossRef A. A. Likhachev and K. Ullakko. Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy. Phys. Lett. A 275, 142 (2000).
CrossRef
116.
Zurück zum Zitat A. A. Likhachev, A. Sozinov and K. Ullakko. Different modeling concepts of magnetic shape memory and their comparison with some experimental results obtained in Ni–Mn–Ga. Mater. Sci. Eng. A 378, 513–518 (2004),. CrossRef A. A. Likhachev, A. Sozinov and K. Ullakko. Different modeling concepts of magnetic shape memory and their comparison with some experimental results obtained in Ni–Mn–Ga. Mater. Sci. Eng. A 378, 513–518 (2004),.
CrossRef
117.
Zurück zum Zitat R. C. O’Handley. Model for strain and magnetization in magnetic shape memory alloys. J. Appl. Phys. 83, 3263–3270 (1998). CrossRef R. C. O’Handley. Model for strain and magnetization in magnetic shape memory alloys. J. Appl. Phys. 83, 3263–3270 (1998).
CrossRef
118.
Zurück zum Zitat B. Kiefer and D. C. Lagoudas. Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys, Philos. Mag. 85, 4289 (2005). CrossRef B. Kiefer and D. C. Lagoudas. Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys, Philos. Mag. 85, 4289 (2005).
CrossRef
119.
Zurück zum Zitat N. Okamoto, T. Fukuda and T. Kakeshita. Magnetocrystalline anisotropy constant and twinning stress in martensite phase of Ni–Mn–Ga. Mat. Sci. Eng. A 438, 948 (2006). CrossRef N. Okamoto, T. Fukuda and T. Kakeshita. Magnetocrystalline anisotropy constant and twinning stress in martensite phase of Ni–Mn–Ga. Mat. Sci. Eng. A 438, 948 (2006).
CrossRef
120.
Zurück zum Zitat J. Kiang and L. Tong. Modelling of magneto-mechanical behaviour of Ni–Mn–Ga single crystals. J. Magn. Magn. Mater. 292, 394 (2005). CrossRef J. Kiang and L. Tong. Modelling of magneto-mechanical behaviour of Ni–Mn–Ga single crystals. J. Magn. Magn. Mater. 292, 394 (2005).
CrossRef
121.
Zurück zum Zitat R. C. O’Handley, S. J. Murray, M. Marioni, H. Nembach and S. M. Allen. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials, J. Appl. Phys. 87, 4712 (2000). CrossRef R. C. O’Handley, S. J. Murray, M. Marioni, H. Nembach and S. M. Allen. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials, J. Appl. Phys. 87, 4712 (2000).
CrossRef
122.
Zurück zum Zitat R. C. O’Handley and S. M. Allen. Ferromagnetic shape memory materials. Encyclopedia of Smart Materials, John Wiley and Sons, New York 936–951 (2001). And R. C. O’Handley, D. I. Paul, S. M. Allen, M. Richard, J. Feuchtwanger, B. Peterson, R. Techapiesancharoenkij, M. Barandiaran, P. Lazpita. Model for temperature dependence of field-induced strain in ferromagnetic shape memory alloys, Mat. Sci. Eng. A 438–440, 445–449 (2006). R. C. O’Handley and S. M. Allen. Ferromagnetic shape memory materials. Encyclopedia of Smart Materials, John Wiley and Sons, New York 936–951 (2001). And R. C. O’Handley, D. I. Paul, S. M. Allen, M. Richard, J. Feuchtwanger, B. Peterson, R. Techapiesancharoenkij, M. Barandiaran, P. Lazpita. Model for temperature dependence of field-induced strain in ferromagnetic shape memory alloys, Mat. Sci. Eng. A 438–440, 445–449 (2006).
123.
Zurück zum Zitat A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Koho, K. Ullakko and V. K. Lindroos. Stress-induced variant rearrangement in Ni–Mn–Ga single crystals with nonlayered tetragonal martensitic structure. J. Physique IV, 115, 127 (2004). CrossRef A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Koho, K. Ullakko and V. K. Lindroos. Stress-induced variant rearrangement in Ni–Mn–Ga single crystals with nonlayered tetragonal martensitic structure. J. Physique IV, 115, 127 (2004).
CrossRef
124.
Zurück zum Zitat A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Ullakko and V. K. Lindroos. Stress- and magnetic-field-induced variant rearrangement in Ni–Mn–Ga single crystals with seven-layered martensitic structure. Mat. Sci. Eng. A 378, 401 (2006). A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Ullakko and V. K. Lindroos. Stress- and magnetic-field-induced variant rearrangement in Ni–Mn–Ga single crystals with seven-layered martensitic structure. Mat. Sci. Eng. A 378, 401 (2006).
125.
Zurück zum Zitat L. Straka and O. Heczko. Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic field. J. Magn. Magn, Mat. 290–291, 829 (2005). CrossRef L. Straka and O. Heczko. Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic field. J. Magn. Magn, Mat. 290–291, 829 (2005).
CrossRef
126.
Zurück zum Zitat L. Straka. Magnetic and magneto-mechanical properties of Ni–Mn–Ga magnetic shape memory alloys. PhD thesis, TKK Helsinki (2007). L. Straka. Magnetic and magneto-mechanical properties of Ni–Mn–Ga magnetic shape memory alloys. PhD thesis, TKK Helsinki (2007).
127.
Zurück zum Zitat L. Straka and O. Heczko. Magnetization changes in Ni–Mn–Ga magnetic shape memory single crystal during compressive stress reorientation. Scripta Materialia 54, 1549–1552 (2006). CrossRef L. Straka and O. Heczko. Magnetization changes in Ni–Mn–Ga magnetic shape memory single crystal during compressive stress reorientation. Scripta Materialia 54, 1549–1552 (2006).
CrossRef
128.
Zurück zum Zitat V. A. Chernenko, V. A. L’vov, P. Mullner and G. Kostorz, T. Takagi. Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: Experiment and modeling. Phys. Rev. B 69, 134410 (2004). CrossRef V. A. Chernenko, V. A. L’vov, P. Mullner and G. Kostorz, T. Takagi. Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: Experiment and modeling. Phys. Rev. B 69, 134410 (2004).
CrossRef
129.
Zurück zum Zitat T. Kakeshita, T. Fukuda and T. Takeuchi. Magneto-mechanical evaluation for twinning plane movement driven by magnetic field in ferromagnetic shape memory alloys. Mat. Sci. Eng. A 438–440, 12 (2006). CrossRef T. Kakeshita, T. Fukuda and T. Takeuchi. Magneto-mechanical evaluation for twinning plane movement driven by magnetic field in ferromagnetic shape memory alloys. Mat. Sci. Eng. A 438–440, 12 (2006).
CrossRef
130.
Zurück zum Zitat R. C. O’Handley, D. I. Paul, S. M. Allen, M. Richard, J. Feuchtwanger, B. Peterson, R. Techapiesancharoenkij, M. Barandiaran and P. Lazpita. Model for temperature dependence of field-induced strain in ferromagnetic shape memory alloys. Mat. Sci. Eng. A 438–440, 445–449 (2006). CrossRef R. C. O’Handley, D. I. Paul, S. M. Allen, M. Richard, J. Feuchtwanger, B. Peterson, R. Techapiesancharoenkij, M. Barandiaran and P. Lazpita. Model for temperature dependence of field-induced strain in ferromagnetic shape memory alloys. Mat. Sci. Eng. A 438–440, 445–449 (2006).
CrossRef
131.
Zurück zum Zitat O. Heczko and K. Ullakko. Effect of temperature on magnetic properties of Ni–Mn–Ga Magnetic Shape Memory (MSM) alloys. IEEE Trans. Magn. 37, 2672 (2001). CrossRef O. Heczko and K. Ullakko. Effect of temperature on magnetic properties of Ni–Mn–Ga Magnetic Shape Memory (MSM) alloys. IEEE Trans. Magn. 37, 2672 (2001).
CrossRef
132.
Zurück zum Zitat L. Straka, O. Heczko and S.-P. Hannula. Temperature dependence of reversible field-induced strain in Ni–Mn–Ga single crystal. Scripta Mat. 54, 1497 (2006). CrossRef L. Straka, O. Heczko and S.-P. Hannula. Temperature dependence of reversible field-induced strain in Ni–Mn–Ga single crystal. Scripta Mat. 54, 1497 (2006).
CrossRef
133.
Zurück zum Zitat N. Glavatska, G. Mogylny and S. Danilkin. Temperature dependence of lattice parameters in martensite and effect of the external magnetic field on martensite structure in Ni2MnGa studied in-situ with neutron diffraction. Mater. Sci. Forum 443–444, 397–400 (2004). CrossRef N. Glavatska, G. Mogylny and S. Danilkin. Temperature dependence of lattice parameters in martensite and effect of the external magnetic field on martensite structure in Ni2MnGa studied in-situ with neutron diffraction. Mater. Sci. Forum 443–444, 397–400 (2004).
CrossRef
134.
Zurück zum Zitat O. Heczko and L. Straka. Temperature dependence and temperature limits of magnetic shape memory effect. J. Appl. Phys. 94(12), 7139–7143 (2003). CrossRef O. Heczko and L. Straka. Temperature dependence and temperature limits of magnetic shape memory effect. J. Appl. Phys. 94(12), 7139–7143 (2003).
CrossRef
135.
Zurück zum Zitat O. Soderberg, L. Straka, O. Heczko, V. Novak and V. K. Lindroos. Tensile/compressive behavior of non-layered tetragonal NiMnGa alloy. Mat. Sci. Eng. A 386, 27 (2004). O. Soderberg, L. Straka, O. Heczko, V. Novak and V. K. Lindroos. Tensile/compressive behavior of non-layered tetragonal NiMnGa alloy. Mat. Sci. Eng. A 386, 27 (2004).
136.
Zurück zum Zitat K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, V. K. Lindroos. Magnetic-field-induced strains in polycrystalline Ni–Mn–Ga at room temperature. Scripta Mat. 44, 475 (2001). CrossRef K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, V. K. Lindroos. Magnetic-field-induced strains in polycrystalline Ni–Mn–Ga at room temperature. Scripta Mat. 44, 475 (2001).
CrossRef
137.
Zurück zum Zitat U. Gaitzsch, M. Potschke, S. Roth, B. Rellinghaus, L. Schultz. A 1% magnetostrain in polycrystalline 5 M Ni-Mn-Ga. Acta Materialia 57, 365–370 (2009). U. Gaitzsch, M. Potschke, S. Roth, B. Rellinghaus, L. Schultz. A 1% magnetostrain in polycrystalline 5 M Ni-Mn-Ga. Acta Materialia 57, 365–370 (2009).
138.
Zurück zum Zitat J. Pons, C. Seguí, V. A. Chernenko, E. Cesari, P. Ochin and R. Portier. Transformation and ageing behaviour of melt-spun Ni–Mn–Ga shape memory alloys. Mat. Sci. Eng. A, 273–275, 315 (1999). CrossRef J. Pons, C. Seguí, V. A. Chernenko, E. Cesari, P. Ochin and R. Portier. Transformation and ageing behaviour of melt-spun Ni–Mn–Ga shape memory alloys. Mat. Sci. Eng. A, 273–275, 315 (1999).
CrossRef
139.
Zurück zum Zitat O. Heczko, M. Thomas, R. Niemann, L. Schultz and S. Fähler. Magnetically induced martensite transition in freestanding epitaxial Ni-Mn-Ga films, Appl. Phys. Lett. 94, 152513 (2009). CrossRef O. Heczko, M. Thomas, R. Niemann, L. Schultz and S. Fähler. Magnetically induced martensite transition in freestanding epitaxial Ni-Mn-Ga films, Appl. Phys. Lett. 94, 152513 (2009).
CrossRef
140.
Zurück zum Zitat J. Feuchtwanger, N. Vidal, J. M. Barandiaran, J. Gutierrez, T. Hansen, M. Peel, C. Mondelli, R. C. O’Handley and S. M. Allen. Rearrangement of twin variants in ferromagnetic shape memory alloy-polyurethane composites studied by stroboscopic neutron diffraction. J. Phys. Condens. Matt. 20, 4247 (2008). A. Berkowitz, UCSD, personal communication, 2005. CrossRef J. Feuchtwanger, N. Vidal, J. M. Barandiaran, J. Gutierrez, T. Hansen, M. Peel, C. Mondelli, R. C. O’Handley and S. M. Allen. Rearrangement of twin variants in ferromagnetic shape memory alloy-polyurethane composites studied by stroboscopic neutron diffraction. J. Phys. Condens. Matt. 20, 4247 (2008). A. Berkowitz, UCSD, personal communication, 2005.
CrossRef
141.
Zurück zum Zitat J. Feuchtwanger, M. L. Richard, Y. J. Tang, A. E. Berkowitz, R. C. O’Handley and S. M. Allen. Large energy absorption in Ni–Mn–Ga/polymer composites. J. Appl. Phys. 97, 10M319 (2005). CrossRef J. Feuchtwanger, M. L. Richard, Y. J. Tang, A. E. Berkowitz, R. C. O’Handley and S. M. Allen. Large energy absorption in Ni–Mn–Ga/polymer composites. J. Appl. Phys. 97, 10M319 (2005).
CrossRef
142.
Zurück zum Zitat N. Scheerbaum, D. Hinz, O. Gutfleisch, K.-H. Muller and L. Schultz. Textured polymer bonded composites with Ni–Mn–Ga magnetic shape memory particles. Acta Mat. 55, 2707 (2007). CrossRef N. Scheerbaum, D. Hinz, O. Gutfleisch, K.-H. Muller and L. Schultz. Textured polymer bonded composites with Ni–Mn–Ga magnetic shape memory particles. Acta Mat. 55, 2707 (2007).
CrossRef
143.
Zurück zum Zitat N. Scheerbaum, O. Heczko, J. Liu, D. Hinz, L. Schultz and O. Gutfleisch. Magnetic field-induced twin boundary motion in polycrystalline Ni–Mn–Ga fibres. New J. Phys. 10, 073002 (2008). CrossRef N. Scheerbaum, O. Heczko, J. Liu, D. Hinz, L. Schultz and O. Gutfleisch. Magnetic field-induced twin boundary motion in polycrystalline Ni–Mn–Ga fibres. New J. Phys. 10, 073002 (2008).
CrossRef
144.
Zurück zum Zitat N. Scheerbaum, D. Hinz, O. Gutfleisch, W. Skrotzki and L. Schultz. Compression-induced texture change in NiMnGa–polymer composites observed by synchrotron radiation. J. Appl. Phys., 101 09C501 (2007). CrossRef N. Scheerbaum, D. Hinz, O. Gutfleisch, W. Skrotzki and L. Schultz. Compression-induced texture change in NiMnGa–polymer composites observed by synchrotron radiation. J. Appl. Phys., 101 09C501 (2007).
CrossRef
145.
Zurück zum Zitat F. J. Castaño, B. Nelson-Cheeseman, R. C. O’Handley, C. A. Ross, C. Redondo and F. Castaño. Structure and thermomagnetic properties of polycrystalline Ni–Mn–Ga thin films. J. Appl. Phys., 93(10), 8492(2003). CrossRef F. J. Castaño, B. Nelson-Cheeseman, R. C. O’Handley, C. A. Ross, C. Redondo and F. Castaño. Structure and thermomagnetic properties of polycrystalline Ni–Mn–Ga thin films. J. Appl. Phys., 93(10), 8492(2003).
CrossRef
146.
Zurück zum Zitat V. A. Chernenko, M. Hagler, P. Müllner, V. M. Kniazkyi, V. A. L’vov, M. Ohtsuka and S. Besseghini. Magnetic susceptibility of martensitic Ni–Mn–Ga film. J. Appl. Phys. 101, 053909 (2007). CrossRef V. A. Chernenko, M. Hagler, P. Müllner, V. M. Kniazkyi, V. A. L’vov, M. Ohtsuka and S. Besseghini. Magnetic susceptibility of martensitic Ni–Mn–Ga film. J. Appl. Phys. 101, 053909 (2007).
CrossRef
147.
Zurück zum Zitat J. W. Dong, et al. Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni 2MnGa on (001) GaAs. Appl. Phys. Lett. 75, 1443 (1999). CrossRef J. W. Dong, et al. Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni
2MnGa on (001) GaAs. Appl. Phys. Lett. 75, 1443 (1999).
CrossRef
148.
Zurück zum Zitat G. Jakob and H. J. Elmers. Epitaxial films of the magnetic shape memory material Ni 2MnGa. J. Magn. Magn. Mater. 310, 2779 (2007). CrossRef G. Jakob and H. J. Elmers. Epitaxial films of the magnetic shape memory material Ni
2MnGa. J. Magn. Magn. Mater. 310, 2779 (2007).
CrossRef
149.
Zurück zum Zitat O. Heczko, M. Thomas, J. Buschbeck, L. Schultz and S. Fähler. Epitaxial Ni–Mn–Ga films deposited on SrTiO3 and evidence of magnetically induced reorientation of martensitic variants at room temperature. Appl. Phys. Lett. 92, 1 (2008). CrossRef O. Heczko, M. Thomas, J. Buschbeck, L. Schultz and S. Fähler. Epitaxial Ni–Mn–Ga films deposited on SrTiO3 and evidence of magnetically induced reorientation of martensitic variants at room temperature. Appl. Phys. Lett. 92, 1 (2008).
CrossRef
150.
Zurück zum Zitat M. Thomas, O. Heczko, J. Buschbeck, Y.W. Lai, J. McCord, L. Schultz and S. Fähler. Stray field induced actuation mode of freestanding magnetic shape memory films, Adv. Mat. (2009), DOI: 10.1002/adma.200900469. M. Thomas, O. Heczko, J. Buschbeck, Y.W. Lai, J. McCord, L. Schultz and S. Fähler. Stray field induced actuation mode of freestanding magnetic shape memory films, Adv. Mat. (2009), DOI: 10.1002/adma.200900469.
151.
Zurück zum Zitat Y. Boonyongmaneerat, M. Chmielus, D. C. Dunand and P. Mullner. Increasing magnetoplasticity in polycrystalline Ni–Mn–Ga by reducing internal constraints through porosity. Phys. Rev. Lett. 99, 247201 (2007). CrossRef Y. Boonyongmaneerat, M. Chmielus, D. C. Dunand and P. Mullner. Increasing magnetoplasticity in polycrystalline Ni–Mn–Ga by reducing internal constraints through porosity. Phys. Rev. Lett. 99, 247201 (2007).
CrossRef
152.
Zurück zum Zitat I. Aaltio, M. Lahelin, O. Soderberg, O. Heczko, B. Lofgren, Y. Ge, J. Seppala and S.-P. Hannula. Temperature dependence of the damping properties of Ni–Mn–Ga alloys. Mat. Sci. Eng. A 481–482, 314–317 (2008). CrossRef I. Aaltio, M. Lahelin, O. Soderberg, O. Heczko, B. Lofgren, Y. Ge, J. Seppala and S.-P. Hannula. Temperature dependence of the damping properties of Ni–Mn–Ga alloys. Mat. Sci. Eng. A 481–482, 314–317 (2008).
CrossRef
153.
Zurück zum Zitat I. Aaltio, K. P. Mohanchandra, O. Heczko, M. Lahelin, Y. Ge, G.P. Carman, O. Soderberg, B. Lofgren J. Seppala and S.-P. Hannula. Temperature dependence of mechanical damping in Ni–Mn–Ga austenite and non-modulated martensite. Scripta Mat. 59, 550 (2008). CrossRef I. Aaltio, K. P. Mohanchandra, O. Heczko, M. Lahelin, Y. Ge, G.P. Carman, O. Soderberg, B. Lofgren J. Seppala and S.-P. Hannula. Temperature dependence of mechanical damping in Ni–Mn–Ga austenite and non-modulated martensite. Scripta Mat. 59, 550 (2008).
CrossRef
154.
Zurück zum Zitat I. Suorsa, J. Tellinen, K. Ullakko and E. Pagounis. Voltage generation induced by mechanical straining in magnetic shape memory materials. J. Appl. Phys. 95, 8054 (2004). CrossRef I. Suorsa, J. Tellinen, K. Ullakko and E. Pagounis. Voltage generation induced by mechanical straining in magnetic shape memory materials. J. Appl. Phys. 95, 8054 (2004).
CrossRef
155.
Zurück zum Zitat I. Karaman, B. Basaran, H. E. Karaca, A. I. Karsilayan and Y. Chumlyakov. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 90, 172505 (2007). CrossRef I. Karaman, B. Basaran, H. E. Karaca, A. I. Karsilayan and Y. Chumlyakov. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 90, 172505 (2007).
CrossRef
156.
Zurück zum Zitat V. V. Kokorin, V. A. Chernenko, V. I. Val’kov, S. M. Konoplyuk and E. A. Khapalyuk. Magnetic transformation in Ni 2MnGa compounds. Phys. Solid State 37, 2049–2051 (1995). V. V. Kokorin, V. A. Chernenko, V. I. Val’kov, S. M. Konoplyuk and E. A. Khapalyuk. Magnetic transformation in Ni
2MnGa compounds. Phys. Solid State 37, 2049–2051 (1995).
157.
Zurück zum Zitat M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel. Magnetostructural transition and magnetocaloric effect in Ni 55Mn 20Ga 25 single crystals. Phys. Rev B, 72, 094435 (2005). CrossRef M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel. Magnetostructural transition and magnetocaloric effect in Ni
55Mn
20Ga
25 single crystals. Phys. Rev B, 72, 094435 (2005).
CrossRef
158.
Zurück zum Zitat J. Marcos, A. Planes, L. Manosa, F. Casanova, X. Batlle, A. Labarta and B. Martinez. Magnetic field induced entropy change and magnetoelasticity in Ni–Mn–Ga alloys. Phys. Rev B, 66, 224413 (2002). CrossRef J. Marcos, A. Planes, L. Manosa, F. Casanova, X. Batlle, A. Labarta and B. Martinez. Magnetic field induced entropy change and magnetoelasticity in Ni–Mn–Ga alloys. Phys. Rev B, 66, 224413 (2002).
CrossRef
159.
Zurück zum Zitat O. Soderberg, I. Aaltio, Y. Ge, O. Heczko and S.-P. Hannula. Ni–Mn–Ga multifunctional compounds. Mat. Sci. Eng. A 481–482, 80–85 (2008). CrossRef O. Soderberg, I. Aaltio, Y. Ge, O. Heczko and S.-P. Hannula. Ni–Mn–Ga multifunctional compounds. Mat. Sci. Eng. A 481–482, 80–85 (2008).
CrossRef
160.
Zurück zum Zitat N. Glavatska. Origin of the time-dependent magnetoplasticity in the Ni–Mn–Ga magnetic shape memory martensites. Mat. Sci. Eng. A 481–482, 73–79F (2008). CrossRef N. Glavatska. Origin of the time-dependent magnetoplasticity in the Ni–Mn–Ga magnetic shape memory martensites. Mat. Sci. Eng. A 481–482, 73–79F (2008).
CrossRef
161.
Zurück zum Zitat F. Xiong, Y. Liu and E. Pagounis. Thermally induced fracture of single crystal Ni–Mn–Ga ferromagnetic shape memory alloy. J. Alloys Comp. 415, 188 (2006). CrossRef F. Xiong, Y. Liu and E. Pagounis. Thermally induced fracture of single crystal Ni–Mn–Ga ferromagnetic shape memory alloy. J. Alloys Comp. 415, 188 (2006).
CrossRef
162.
Zurück zum Zitat J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, K. Ullakko and H. Borgmann (Ed.). Proc. ACTUATOR 2002, Bremen, Germany (2002), pp. 566–569. J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, K. Ullakko and H. Borgmann (Ed.). Proc. ACTUATOR 2002, Bremen, Germany (2002), pp. 566–569.
163.
Zurück zum Zitat O. Heczko, L. Straka, O. Söderberg and S.-P. Hannula. Magnetic shape memory fatigue, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, edited by William D. Armstrong, Proceedings of SPIE Vol. 5761 (2005) p. 513. O. Heczko, L. Straka, O. Söderberg and S.-P. Hannula. Magnetic shape memory fatigue, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, edited by William D. Armstrong, Proceedings of SPIE Vol. 5761 (2005) p. 513.
- Titel
- Magnetic Shape Memory Phenomena
- DOI
- https://doi.org/10.1007/978-0-387-85600-1_14
- Autoren:
-
Oleg Heczko
Nils Scheerbaum
Oliver Gutfleisch
- Verlag
- Springer US
- Sequenznummer
- 14
- Kapitelnummer
- Chapter 14