Skip to main content
Erschienen in: Neural Computing and Applications 4/2018

03.12.2016 | Original Article

Magnetic source impact on nanofluid heat transfer using CVFEM

verfasst von: M. Sheikholeslami

Erschienen in: Neural Computing and Applications | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Influence of variable magnetic field on Fe3O4–H2O heat transfer in a cavity with circular hot cylinder is investigated. Innovative numerical method is chosen, namely CVFEM. The effects of radiation parameter, Rayleigh and Hartmann numbers on hydrothermal characteristics are presented. Results indicated that Lorentz forces cause the nanofluid motion to decrease and augment the thermal boundary layer thickness. Temperature gradient augments with augmentation of radiation parameter, Rayleigh number, but it reduces with augmentation of Lorentz forces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zin NAM, Khan I, Shafie S (2016) The impact silver nanoparticles on MHD free convection flow of Jeffrey fluid over an oscillating vertical plate embedded in a porous medium. J Mol Liq 222:138–150CrossRef Zin NAM, Khan I, Shafie S (2016) The impact silver nanoparticles on MHD free convection flow of Jeffrey fluid over an oscillating vertical plate embedded in a porous medium. J Mol Liq 222:138–150CrossRef
2.
Zurück zum Zitat Khalid A, Khan I, Shafie S (2016) Heat transfer in ferrofluid with cylindrical shape nanoparticles past a vertical plate with ramped wall temperature embedded in a porous medium. J Mol Liq 221:1175–1183CrossRef Khalid A, Khan I, Shafie S (2016) Heat transfer in ferrofluid with cylindrical shape nanoparticles past a vertical plate with ramped wall temperature embedded in a porous medium. J Mol Liq 221:1175–1183CrossRef
3.
Zurück zum Zitat Sheikholeslami M, Ganji DD (2016) Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng 65:43–77CrossRef Sheikholeslami M, Ganji DD (2016) Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng 65:43–77CrossRef
4.
Zurück zum Zitat Sheremet MA, Pop I, Roşca NC (2016) Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J Taiwan Inst Chem Eng 61:211–222CrossRef Sheremet MA, Pop I, Roşca NC (2016) Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J Taiwan Inst Chem Eng 61:211–222CrossRef
5.
Zurück zum Zitat Khalid A, Khan I, Shafie S (2015) Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium. Nanoscale Res Lett. doi:10.1186/s11671-015-1144-4 Khalid A, Khan I, Shafie S (2015) Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium. Nanoscale Res Lett. doi:10.​1186/​s11671-015-1144-4
6.
Zurück zum Zitat Sheikholeslami M, Rashidi MM (2015) Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid. J Taiwan Inst Chem Eng 56:6–15CrossRef Sheikholeslami M, Rashidi MM (2015) Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid. J Taiwan Inst Chem Eng 56:6–15CrossRef
7.
Zurück zum Zitat Gul A, Khan I, Shafie S, Khalid A, Khan A (2015) Heat transfer in MHD mixed convection flow of a ferrofluid along a vertical channel. PLoS ONE 11(10):1–14 Gul A, Khan I, Shafie S, Khalid A, Khan A (2015) Heat transfer in MHD mixed convection flow of a ferrofluid along a vertical channel. PLoS ONE 11(10):1–14
8.
Zurück zum Zitat Ali F, Gohara M, Khan I (2016) MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration. J Mol Liq 223:412–419CrossRef Ali F, Gohara M, Khan I (2016) MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration. J Mol Liq 223:412–419CrossRef
9.
Zurück zum Zitat Khalid A, Khan I, Shafie S (2015) Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur Phys J Plus 130:57CrossRef Khalid A, Khan I, Shafie S (2015) Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur Phys J Plus 130:57CrossRef
10.
Zurück zum Zitat Selimefendigil F, Öztop HF (2016) Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. J Mol Liq 216:67–77CrossRef Selimefendigil F, Öztop HF (2016) Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. J Mol Liq 216:67–77CrossRef
11.
Zurück zum Zitat Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808CrossRef Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808CrossRef
12.
Zurück zum Zitat Ellahi R, Hassan M, Zeeshan A (2015) Study of natural convection MHD nanofluid by means of single and multi walled carbon nanotubes suspended in a salt water solutions. IEEE Trans Nanotechnol 14(4):726–734CrossRef Ellahi R, Hassan M, Zeeshan A (2015) Study of natural convection MHD nanofluid by means of single and multi walled carbon nanotubes suspended in a salt water solutions. IEEE Trans Nanotechnol 14(4):726–734CrossRef
13.
Zurück zum Zitat Zeeshan A, Majeed A, Ellahi R (2016) Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J Mol Liq 215:549–554CrossRef Zeeshan A, Majeed A, Ellahi R (2016) Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J Mol Liq 215:549–554CrossRef
14.
Zurück zum Zitat Kandelousi MS (2014) Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus 129–248. doi:10.1140/epjp/i2014-14248-2 Kandelousi MS (2014) Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus 129–248. doi:10.​1140/​epjp/​i2014-14248-2
15.
Zurück zum Zitat Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456CrossRef Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456CrossRef
16.
Zurück zum Zitat Zeeshan A, Majeed A (2016) Non Darcy mixed convection flow of magnetic fluid over a permeable stretching sheet with Ohmic dissipation. J Magn 21:153–158CrossRef Zeeshan A, Majeed A (2016) Non Darcy mixed convection flow of magnetic fluid over a permeable stretching sheet with Ohmic dissipation. J Magn 21:153–158CrossRef
17.
Zurück zum Zitat Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43CrossRef Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43CrossRef
18.
Zurück zum Zitat Sheikholeslami M, Vajravelu K, Rashidi MM (2016) Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf 92:339–348CrossRef Sheikholeslami M, Vajravelu K, Rashidi MM (2016) Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf 92:339–348CrossRef
19.
20.
Zurück zum Zitat Majeed A, Zeeshan A, Ellahi R (2016) Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J Mol Liq 223:528–533CrossRef Majeed A, Zeeshan A, Ellahi R (2016) Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J Mol Liq 223:528–533CrossRef
22.
Zurück zum Zitat Sheikholeslami M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A 69(10):1186–1200. doi:10.1080/10407782.2015.1125709 CrossRef Sheikholeslami M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A 69(10):1186–1200. doi:10.​1080/​10407782.​2015.​1125709 CrossRef
25.
Zurück zum Zitat Sheikholeslami M, Hayat T, Alsaedi A (2016) MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf 96:513–524CrossRef Sheikholeslami M, Hayat T, Alsaedi A (2016) MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf 96:513–524CrossRef
26.
Zurück zum Zitat Anwar MI, Khan I, Hussanan A, Salleh MZ, Sharidan S (2013) Stagnation-point flow of a nanofluid over a nonlinear stretching sheet. World Appl Sci J 23(8):998–1006 Anwar MI, Khan I, Hussanan A, Salleh MZ, Sharidan S (2013) Stagnation-point flow of a nanofluid over a nonlinear stretching sheet. World Appl Sci J 23(8):998–1006
28.
Zurück zum Zitat Ellahi R, Zeeshan A, Hassan M (2015) Particle shape effects on Marangoni convection boundary layer flow of a nanofluid. Int J Numer Methods Heat Fluid Flow 26:2160–2174CrossRef Ellahi R, Zeeshan A, Hassan M (2015) Particle shape effects on Marangoni convection boundary layer flow of a nanofluid. Int J Numer Methods Heat Fluid Flow 26:2160–2174CrossRef
29.
Zurück zum Zitat Sheikholeslami M, Ashorynejad HR, Rana P (2016) Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J Mol Liq 214:86–95CrossRef Sheikholeslami M, Ashorynejad HR, Rana P (2016) Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J Mol Liq 214:86–95CrossRef
30.
Zurück zum Zitat Sheikholeslami M, Rashidi MM (2015) Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur Phys J Plus 130:115CrossRef Sheikholeslami M, Rashidi MM (2015) Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur Phys J Plus 130:115CrossRef
31.
Zurück zum Zitat Sheikholeslami M, Abelman S (2015) Two phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field. IEEE Trans Nanotechnol 14(3):561–569CrossRef Sheikholeslami M, Abelman S (2015) Two phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field. IEEE Trans Nanotechnol 14(3):561–569CrossRef
32.
Zurück zum Zitat Sheikholeslami M, Ellahi R (2015) Simulation of ferrofluid flow for magnetic drug targeting using lattice Boltzmann method. J Z Naturforschung A 70(2):115–124 Sheikholeslami M, Ellahi R (2015) Simulation of ferrofluid flow for magnetic drug targeting using lattice Boltzmann method. J Z Naturforschung A 70(2):115–124
33.
Zurück zum Zitat Sheikholeslami M, Rokni HB (2017) Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf 107:288–299CrossRef Sheikholeslami M, Rokni HB (2017) Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf 107:288–299CrossRef
35.
Zurück zum Zitat Hayat T, Hussain Z, Muhammad T, Alsaedi A (2016) Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. J Mol Liq 221:1121–1127CrossRef Hayat T, Hussain Z, Muhammad T, Alsaedi A (2016) Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. J Mol Liq 221:1121–1127CrossRef
36.
Zurück zum Zitat Sheikholeslami M, Ellahi R, Hassan M, Soleimani S (2014) A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Methods Heat Fluid Flow 24(8):1906–1927CrossRef Sheikholeslami M, Ellahi R, Hassan M, Soleimani S (2014) A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Methods Heat Fluid Flow 24(8):1906–1927CrossRef
37.
Zurück zum Zitat Kandelousi MS (2014) KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A 378(45):3331–3339CrossRefMATH Kandelousi MS (2014) KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A 378(45):3331–3339CrossRefMATH
38.
Zurück zum Zitat Sheikholeslami M (2015) Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng 37:1623–1633CrossRef Sheikholeslami M (2015) Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng 37:1623–1633CrossRef
39.
Zurück zum Zitat Sheikholeslami M, Ganji DD (2014) Ferrohydrodynamic and Magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75:400–410CrossRef Sheikholeslami M, Ganji DD (2014) Ferrohydrodynamic and Magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75:400–410CrossRef
40.
Zurück zum Zitat Sheikholeslami M, Ganji DD (2016) External magnetic field effects on hydrothermal treatment of nanofluid. William Andrew, Elsevier, Amsterdam, pp 1–354. ISBN: 9780323431385 Sheikholeslami M, Ganji DD (2016) External magnetic field effects on hydrothermal treatment of nanofluid. William Andrew, Elsevier, Amsterdam, pp 1–354. ISBN: 9780323431385
41.
Zurück zum Zitat Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transfr 46:3639–3653CrossRefMATH Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transfr 46:3639–3653CrossRefMATH
42.
Zurück zum Zitat Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK (1995) Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci 33:1075–1084CrossRefMATH Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK (1995) Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci 33:1075–1084CrossRefMATH
Metadaten
Titel
Magnetic source impact on nanofluid heat transfer using CVFEM
verfasst von
M. Sheikholeslami
Publikationsdatum
03.12.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 4/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2740-7

Weitere Artikel der Ausgabe 4/2018

Neural Computing and Applications 4/2018 Zur Ausgabe