Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 4/2017

01.07.2016 | Original Article

Magneto-acoustic imaging by continuous-wave excitation

verfasst von: Zhang Shunqi, Xiaoqing Zhou, Yin Tao, Liu Zhipeng

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10−7 Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aliroteh MS, Scott G, Arbabian A (2014) A frequency-modulated magneto-acoustic detection and imaging. Electron Lett 50(11):790–792CrossRef Aliroteh MS, Scott G, Arbabian A (2014) A frequency-modulated magneto-acoustic detection and imaging. Electron Lett 50(11):790–792CrossRef
2.
Zurück zum Zitat Craig EC (1993) Electronics via waveform analysis. Springer, New York, pp 315–317CrossRef Craig EC (1993) Electronics via waveform analysis. Springer, New York, pp 315–317CrossRef
3.
Zurück zum Zitat Emerson JF, Chang DB, McNaughton S, Jeong JS, Shung KK, Cerwin SA (2013) Electromagnetic acoustic imaging. IEEE Trans Ultrason Ferroelectron 60(2):364–372CrossRef Emerson JF, Chang DB, McNaughton S, Jeong JS, Shung KK, Cerwin SA (2013) Electromagnetic acoustic imaging. IEEE Trans Ultrason Ferroelectron 60(2):364–372CrossRef
4.
Zurück zum Zitat Guoqiang L, Xin H, Hui H (2013) Magnetoacoustic tomography with current injection. Chin Sci Bull 58(30):3600–3606CrossRef Guoqiang L, Xin H, Hui H (2013) Magnetoacoustic tomography with current injection. Chin Sci Bull 58(30):3600–3606CrossRef
5.
Zurück zum Zitat Hu G, He B (2011) Magnetoacoustic imaging of electrical conductivity of biological tissues at a spatial resolution better than 2 mm. PLoS One 6(8):e23421CrossRefPubMedPubMedCentral Hu G, He B (2011) Magnetoacoustic imaging of electrical conductivity of biological tissues at a spatial resolution better than 2 mm. PLoS One 6(8):e23421CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Hu G, Cressman E, He B (2011) Magnetoacoustic imaging of human liver tumor with magnetic induction. Appl Phys Lett 98:023703CrossRefPubMedCentral Hu G, Cressman E, He B (2011) Magnetoacoustic imaging of human liver tumor with magnetic induction. Appl Phys Lett 98:023703CrossRefPubMedCentral
7.
Zurück zum Zitat Li X, He B (2010) Multi-excitation magnetoacoustic tomography with magnetic induction (MAT-MI). Int Conf Electr Bioimpedance. 224:012035 Li X, He B (2010) Multi-excitation magnetoacoustic tomography with magnetic induction (MAT-MI). Int Conf Electr Bioimpedance. 224:012035
8.
Zurück zum Zitat Mariappan L, Hu G, He B (2014) Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet. Med Phys 41:022902CrossRefPubMedPubMedCentral Mariappan L, Hu G, He B (2014) Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet. Med Phys 41:022902CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Mohamad Salim MI, Supriyanto E, Haueisen J, Ariffin I, Ahmad AH, Rosidi B (2013) Measurement of bioelectric and acoustic profile of breast tissue using hybrid magnetoacoustic method for cancer detection. Med Biol Eng Comput 51(4):459–466CrossRef Mohamad Salim MI, Supriyanto E, Haueisen J, Ariffin I, Ahmad AH, Rosidi B (2013) Measurement of bioelectric and acoustic profile of breast tissue using hybrid magnetoacoustic method for cancer detection. Med Biol Eng Comput 51(4):459–466CrossRef
10.
Zurück zum Zitat Mongrain G, Destrempes F, Mari JM, Souchon R, Catheline S, Chapelon JY, Cloutier G (2015) Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography. Phys Med Biol 60:3747–3757CrossRef Mongrain G, Destrempes F, Mari JM, Souchon R, Catheline S, Chapelon JY, Cloutier G (2015) Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography. Phys Med Biol 60:3747–3757CrossRef
11.
Zurück zum Zitat Montalibet A, Jossinet J, Matias A (2001) Electric current generated by ultrasonically induced Lorentz force in biological media. Med Biol Eng Comput 39(1):15–20CrossRefPubMed Montalibet A, Jossinet J, Matias A (2001) Electric current generated by ultrasonically induced Lorentz force in biological media. Med Biol Eng Comput 39(1):15–20CrossRefPubMed
12.
Zurück zum Zitat Narayana N (2006) Elements of engineering electromagnetics. China Machine Press, Beijing, pp 35–37 Narayana N (2006) Elements of engineering electromagnetics. China Machine Press, Beijing, pp 35–37
13.
Zurück zum Zitat Oppenheim A, Wliisky AS, Nawab H (1998) Signals and systems. Xian jiaotong university press & Prentice Hall, New York, pp 371–392 Oppenheim A, Wliisky AS, Nawab H (1998) Signals and systems. Xian jiaotong university press & Prentice Hall, New York, pp 371–392
14.
Zurück zum Zitat Powell MJD (1970) A new algorithm for unconstrained optimisation. Academic Press Inc, New York, pp 31–66 Powell MJD (1970) A new algorithm for unconstrained optimisation. Academic Press Inc, New York, pp 31–66
15.
Zurück zum Zitat Renzhiglova E, Ivantsiv V, Xu Y (2010) Difference frequency magneto-acousto-electrical tomography (DF-MAET) application of ultrasound-induced radiation force to imaging electrical current density. IEEE Trans Ultrason Ferroelectron 57(11):2319–2402 Renzhiglova E, Ivantsiv V, Xu Y (2010) Difference frequency magneto-acousto-electrical tomography (DF-MAET) application of ultrasound-induced radiation force to imaging electrical current density. IEEE Trans Ultrason Ferroelectron 57(11):2319–2402
16.
Zurück zum Zitat Roth BJ (2011) The role of magnetic forces in biology and medicine. B Exp Biol Med 236:132–137CrossRef Roth BJ (2011) The role of magnetic forces in biology and medicine. B Exp Biol Med 236:132–137CrossRef
17.
Zurück zum Zitat Roth BJ, Basser PJ, John PW (1994) A theoretical model for magneto-acoustic imaging of bioelectric currents. IEEE Trans Bio-Med Eng 41(8):723–728CrossRef Roth BJ, Basser PJ, John PW (1994) A theoretical model for magneto-acoustic imaging of bioelectric currents. IEEE Trans Bio-Med Eng 41(8):723–728CrossRef
18.
Zurück zum Zitat Roth BJ, Luterek A, Puwal S (2014) The movement of a nerve in a magnetic field: application to MRI Lorentz effect imaging. Med Biol Eng Comput 52(5):491–498CrossRefPubMedPubMedCentral Roth BJ, Luterek A, Puwal S (2014) The movement of a nerve in a magnetic field: application to MRI Lorentz effect imaging. Med Biol Eng Comput 52(5):491–498CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Scofield JH (1994) Frequency-domain description of a lock-in amplifier. Am J Phys 62(2):129–132CrossRef Scofield JH (1994) Frequency-domain description of a lock-in amplifier. Am J Phys 62(2):129–132CrossRef
20.
Zurück zum Zitat Shigang W, Shunqi Z, Ren M, Tao Y, Zhipeng L (2014) A study of acoustic source generation mechanism of Magnetoacoustic Tomography. Comput Med Imaging Graph 38(1):42–48CrossRef Shigang W, Shunqi Z, Ren M, Tao Y, Zhipeng L (2014) A study of acoustic source generation mechanism of Magnetoacoustic Tomography. Comput Med Imaging Graph 38(1):42–48CrossRef
21.
Zurück zum Zitat Sun Xiaodong, Zhang Feng, Ma Qingyu, Juan Tu, Zhang Dong (2012) Acoustic dipole radiation based conductivity image reconstruction for magnetoacoustic tomography with magnetic induction. Appl Phys Lett 100:024105CrossRef Sun Xiaodong, Zhang Feng, Ma Qingyu, Juan Tu, Zhang Dong (2012) Acoustic dipole radiation based conductivity image reconstruction for magnetoacoustic tomography with magnetic induction. Appl Phys Lett 100:024105CrossRef
22.
Zurück zum Zitat Towe BC, Islam MR (1988) A magneto-acoustic method for the noninvasive measurement of bioelectric currents. IEEE Trans Bio-Med Eng 35(10):892–894CrossRef Towe BC, Islam MR (1988) A magneto-acoustic method for the noninvasive measurement of bioelectric currents. IEEE Trans Bio-Med Eng 35(10):892–894CrossRef
23.
Zurück zum Zitat Tseng Nancy, Roth Bradley J (2008) The potential induced in anisotropic tissue by the ultrasonically-induced Lorentz force. Med Biol Eng Comput 46(2):195–197CrossRefPubMed Tseng Nancy, Roth Bradley J (2008) The potential induced in anisotropic tissue by the ultrasonically-induced Lorentz force. Med Biol Eng Comput 46(2):195–197CrossRefPubMed
24.
Zurück zum Zitat Wen H, Shah J, Balaban RS (1998) Hall Effect imaging. IEEE Trans Bio-Med Eng 45(1):119–124CrossRef Wen H, Shah J, Balaban RS (1998) Hall Effect imaging. IEEE Trans Bio-Med Eng 45(1):119–124CrossRef
25.
Zurück zum Zitat Xiao-Dong S, Xin W, Yu-Qi Z, Qing-Yu M, Dong Z (2015) Reception pattern influence on magnetoacoustic tomography with magnetic induction. Chin Phys B 24(1):014302CrossRef Xiao-Dong S, Xin W, Yu-Qi Z, Qing-Yu M, Dong Z (2015) Reception pattern influence on magnetoacoustic tomography with magnetic induction. Chin Phys B 24(1):014302CrossRef
Metadaten
Titel
Magneto-acoustic imaging by continuous-wave excitation
verfasst von
Zhang Shunqi
Xiaoqing Zhou
Yin Tao
Liu Zhipeng
Publikationsdatum
01.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 4/2017
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-016-1538-1

Weitere Artikel der Ausgabe 4/2017

Medical & Biological Engineering & Computing 4/2017 Zur Ausgabe