Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 4/2022

01.04.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetocaloric Effect and Magnetization of Gadolinium in Quasi-Stationary and Pulsed Magnetic Fields up to 40 kOe

verfasst von: A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, V. I. Val’kov, B. M. Todris, S. V. Taskaev

Erschienen in: Physics of Metals and Metallography | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This study is aimed at developing new experimental methods for investigating the magnetic and thermodynamic properties of solid magnetic materials near phase transitions in high magnetic fields with the use of polycrystalline Gd as an example. The magnetocaloric effect and the magnetization of Gd samples at ambient temperatures in quasi-stationary and pulsed magnetic fields up to 40 kOe are simultaneously measured using two different methods. The results of experiments obtained by different methods are compared, and the effect of eddy currents on the results is evaluated. The maximum value obtained for the magnetocaloric effect in Gd samples is ΔT = 7.3 K at T0 = 299.3 K in a pulsed magnetic field of 40 kOe.
Literatur
1.
Zurück zum Zitat V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018). CrossRef V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018). CrossRef
2.
Zurück zum Zitat G. V. Brown, “Magnetic heat pumping near room temperature,” J. Appl. Phys. 47, 3673–3680 (1976). CrossRef G. V. Brown, “Magnetic heat pumping near room temperature,” J. Appl. Phys. 47, 3673–3680 (1976). CrossRef
3.
Zurück zum Zitat S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, and O. Gutfleisch, “Plastically deformed Gd–X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry,” J. Alloy Compd. 754, 207–214 (2018). CrossRef S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, and O. Gutfleisch, “Plastically deformed Gd–X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry,” J. Alloy Compd. 754, 207–214 (2018). CrossRef
4.
Zurück zum Zitat S. Taskaev, K. Skokov, V. Khovaylo, M. Ulyanov, D. Bataev, D. Karpenkov, I. Radulov, A. Dyakonov, and O. Gutfleisch, “Magnetocaloric effect in cold rolled foils of Gd 100 – xIn x ( x = 0, 1, 3),” J. Magn. Magn. Mater. 459, 46–48 (2018). CrossRef S. Taskaev, K. Skokov, V. Khovaylo, M. Ulyanov, D. Bataev, D. Karpenkov, I. Radulov, A. Dyakonov, and O. Gutfleisch, “Magnetocaloric effect in cold rolled foils of Gd 100 – xIn x ( x = 0, 1, 3),” J. Magn. Magn. Mater. 459, 46–48 (2018). CrossRef
5.
Zurück zum Zitat S. Taskaev, K. Skokov, D. Karpenkov, V. Khovaylo, M. Ulyanov, D. Bataev, A. Dyakonov, A. Fazlitdinova, and O. Gutfleisch, “The effect of plastic deformation on magnetic and magnetocaloric properties of Gd–B alloys,” J. Magn. Magn. Mater. 442, 360–363 (2017). CrossRef S. Taskaev, K. Skokov, D. Karpenkov, V. Khovaylo, M. Ulyanov, D. Bataev, A. Dyakonov, A. Fazlitdinova, and O. Gutfleisch, “The effect of plastic deformation on magnetic and magnetocaloric properties of Gd–B alloys,” J. Magn. Magn. Mater. 442, 360–363 (2017). CrossRef
6.
Zurück zum Zitat S. Taskaev, K. Skokov, V. Khovaylo, V. Buchelnikov, A. Pellenen, D. Karpenkov, M. Ulyanov, D. Bataev, A. Usenko, M. Lyange, and O. Gutfleisch, “Effect of severe plastic deformation on the specific heat and magnetic properties of cold rolled Gd sheets,” J. Appl. Phys. 117, 123914 (2015). CrossRef S. Taskaev, K. Skokov, V. Khovaylo, V. Buchelnikov, A. Pellenen, D. Karpenkov, M. Ulyanov, D. Bataev, A. Usenko, M. Lyange, and O. Gutfleisch, “Effect of severe plastic deformation on the specific heat and magnetic properties of cold rolled Gd sheets,” J. Appl. Phys. 117, 123914 (2015). CrossRef
7.
Zurück zum Zitat S. V. Taskaev, V. D. Buchelnikov, A. P. Pellenen, M. D. Kuz’min, K. P. Skokov, D. Y. Karpenkov, D. S. Bataev, and O. Gutfleisch, “Influence of thermal treatment on magnetocaloric properties of Gd cold rolled ribbons.,” J. Appl. Phys. 113, 17A933 (2013). S. V. Taskaev, V. D. Buchelnikov, A. P. Pellenen, M. D. Kuz’min, K. P. Skokov, D. Y. Karpenkov, D. S. Bataev, and O. Gutfleisch, “Influence of thermal treatment on magnetocaloric properties of Gd cold rolled ribbons.,” J. Appl. Phys. 113, 17A933 (2013).
8.
Zurück zum Zitat S. V. Taskaev, M. D. Kuz’min, K. P. Skokov, D. Y. Karpenkov, A. P. Pellenen, V. D. Buchelnikov, and O. Gutfleisch, “Giant induced anisotropy ruins the magnetocaloric effect in gadolinium,” J. Magn. Magn. Mater. 331, 33–36 (2013). CrossRef S. V. Taskaev, M. D. Kuz’min, K. P. Skokov, D. Y. Karpenkov, A. P. Pellenen, V. D. Buchelnikov, and O. Gutfleisch, “Giant induced anisotropy ruins the magnetocaloric effect in gadolinium,” J. Magn. Magn. Mater. 331, 33–36 (2013). CrossRef
9.
Zurück zum Zitat S. Y. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, “Magnetic phase transitions and the magnetothermal properties of gadolinium,” Phys. Rev. B 57, 3478 (1998). CrossRef S. Y. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, “Magnetic phase transitions and the magnetothermal properties of gadolinium,” Phys. Rev. B 57, 3478 (1998). CrossRef
10.
Zurück zum Zitat G. S. Burkhanov, N. B. Kolchugina, E. A. Tereshina, I. S. Tereshina, G. A. Politova, V. B. Chzhan, D. Badurski, O. D. Chistyakov, M. Paukov, H. Drulis, and L. Havela, “Magnetocaloric properties of distilled gadolinium: effects of structural inhomogeneity and hydrogen impurity,” Appl. Phys. Lett. 104, 242402 (2014). CrossRef G. S. Burkhanov, N. B. Kolchugina, E. A. Tereshina, I. S. Tereshina, G. A. Politova, V. B. Chzhan, D. Badurski, O. D. Chistyakov, M. Paukov, H. Drulis, and L. Havela, “Magnetocaloric properties of distilled gadolinium: effects of structural inhomogeneity and hydrogen impurity,” Appl. Phys. Lett. 104, 242402 (2014). CrossRef
11.
Zurück zum Zitat Y. S. Koshkid’ko, J. Ćwik, T. I. Ivanova, S. A. Nikitin, M. Miller, and K. Rogacki, “Magnetocaloric properties of Gd in fields up to 14 T,” J. Magn. Magn. Mater. 433, 234–238 (2017). CrossRef Y. S. Koshkid’ko, J. Ćwik, T. I. Ivanova, S. A. Nikitin, M. Miller, and K. Rogacki, “Magnetocaloric properties of Gd in fields up to 14 T,” J. Magn. Magn. Mater. 433, 234–238 (2017). CrossRef
12.
Zurück zum Zitat A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, and I. S. Tereshina, “Thermodynamic and relaxation processes near Curie point in gadolinium,” Solid State Phenom. 215, 113–118 (2014). CrossRef A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, and I. S. Tereshina, “Thermodynamic and relaxation processes near Curie point in gadolinium,” Solid State Phenom. 215, 113–118 (2014). CrossRef
13.
Zurück zum Zitat A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, and I. S. Tereshina, “Magnetocaloric effect of gadolinium at adiabatic and quasi-isothermal conditions in high magnetic fields,” Solid State Phenom. 233– 234, 216–219 (2015). CrossRef A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, and I. S. Tereshina, “Magnetocaloric effect of gadolinium at adiabatic and quasi-isothermal conditions in high magnetic fields,” Solid State Phenom. 233234, 216–219 (2015). CrossRef
14.
Zurück zum Zitat T. Kihara, Y. Kohama, Y. Hashimoto, S. Katsumoto, and M. Tokunaga, “Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T,” Rev. Sci. Instrum. 84, 074901 (2013). CrossRef T. Kihara, Y. Kohama, Y. Hashimoto, S. Katsumoto, and M. Tokunaga, “Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T,” Rev. Sci. Instrum. 84, 074901 (2013). CrossRef
15.
Zurück zum Zitat A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, N. H. Yen, P. T. Thanh, V. M. Quang, N. H. Dan, A. S. Los, A. Gilewski, I. S. Tereshina, and L. N. Butvina, “Measurement of magnetocaloric effect in pulsed magnetic fields with the help of infrared fiber optical temperature sensor,” J. Magn. Magn. Mater. 440, 70–73 (2017). CrossRef A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, N. H. Yen, P. T. Thanh, V. M. Quang, N. H. Dan, A. S. Los, A. Gilewski, I. S. Tereshina, and L. N. Butvina, “Measurement of magnetocaloric effect in pulsed magnetic fields with the help of infrared fiber optical temperature sensor,” J. Magn. Magn. Mater. 440, 70–73 (2017). CrossRef
16.
Zurück zum Zitat A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, A. P. Sivachenko, B. M. Todris, V. I. Val’kov, A. V. Koshelev, and G. A. Shandryuk, “Magnetocaloric effect and magnetization of composite material based on MnAs in pulsed magnetic fields up to 40 kOe,” Chelyabinsk Physical and Mathematical Journal 5, 537–544 (2020). A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, A. P. Sivachenko, B. M. Todris, V. I. Val’kov, A. V. Koshelev, and G. A. Shandryuk, “Magnetocaloric effect and magnetization of composite material based on MnAs in pulsed magnetic fields up to 40 kOe,” Chelyabinsk Physical and Mathematical Journal 5, 537–544 (2020).
17.
Zurück zum Zitat L. N. Butvina, O. V. Sereda, E. M. Dianov, N. V. Lichkova, and V. N. Zagorodnev, “Single-mode microstructured optical fiber for the middle infrared,” Opt. Lett. 32, 334–336 (2007). CrossRef L. N. Butvina, O. V. Sereda, E. M. Dianov, N. V. Lichkova, and V. N. Zagorodnev, “Single-mode microstructured optical fiber for the middle infrared,” Opt. Lett. 32, 334–336 (2007). CrossRef
18.
Zurück zum Zitat L. N. Butvina, O. V. Sereda, A. L. Butvina, E. M. Dianov, N. V. Lichkova, and V. N. Zagorodnev, “Large-mode-area single-mode microstructured optical fibre for the mid-IR region,” Quantum Electron. 39 (3), 283 (2009). CrossRef L. N. Butvina, O. V. Sereda, A. L. Butvina, E. M. Dianov, N. V. Lichkova, and V. N. Zagorodnev, “Large-mode-area single-mode microstructured optical fibre for the mid-IR region,” Quantum Electron. 39 (3), 283 (2009). CrossRef
19.
Zurück zum Zitat V. P. Ponomarenko, “Cadmium mercury telluride and the new generation of photoelectronic devices,” Phys.-Usp. 46, 629–644 (2003). CrossRef V. P. Ponomarenko, “Cadmium mercury telluride and the new generation of photoelectronic devices,” Phys.-Usp. 46, 629–644 (2003). CrossRef
20.
Zurück zum Zitat A. F. Vul’ and B. M. Todris, Pulse Magnetometer for Measurements in Strong Magnetic Fields under Pressure (Donetsk Physico-Technical Institute, of Ukrainian Academy of Sciences, Donetsk, 1988) [in Russian]. A. F. Vul’ and B. M. Todris, Pulse Magnetometer for Measurements in Strong Magnetic Fields under Pressure (Donetsk Physico-Technical Institute, of Ukrainian Academy of Sciences, Donetsk, 1988) [in Russian].
21.
Zurück zum Zitat E. T. Dilmieva, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, J. Cwik, and I. S. Tereshina, “Experimental simulation of a magnetic refrigeration cycle in high magnetic fields,” Phys. Solid State 58, 81–85 (2016). CrossRef E. T. Dilmieva, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, J. Cwik, and I. S. Tereshina, “Experimental simulation of a magnetic refrigeration cycle in high magnetic fields,” Phys. Solid State 58, 81–85 (2016). CrossRef
22.
Zurück zum Zitat W. Viehmann, “Magnetometer based on the Hall Effect,” Rev. Sci. Instrum. 33, 537–539 (1962). CrossRef W. Viehmann, “Magnetometer based on the Hall Effect,” Rev. Sci. Instrum. 33, 537–539 (1962). CrossRef
23.
Zurück zum Zitat V. I. Nizhankovskii and V. I. Tsebro, “International laboratory of high magnetic fields and low temperatures: how it was set up and how it evolved,” Phys.-Usp. 56, 204–210 (2013). CrossRef V. I. Nizhankovskii and V. I. Tsebro, “International laboratory of high magnetic fields and low temperatures: how it was set up and how it evolved,” Phys.-Usp. 56, 204–210 (2013). CrossRef
24.
Zurück zum Zitat J. Lammeraner and M. Štafl, Eddy Currents (Iliffe Books, London, 1966). J. Lammeraner and M. Štafl, Eddy Currents (Iliffe Books, London, 1966).
25.
Zurück zum Zitat R. V. Colvin, S. Legvold, and F. H. Spedding, “Electrical resistivity of the heavy rare-earth metals,” Phys. Rev. 120, 741–745 (1960). CrossRef R. V. Colvin, S. Legvold, and F. H. Spedding, “Electrical resistivity of the heavy rare-earth metals,” Phys. Rev. 120, 741–745 (1960). CrossRef
Metadaten
Titel
Magnetocaloric Effect and Magnetization of Gadolinium in Quasi-Stationary and Pulsed Magnetic Fields up to 40 kOe
verfasst von
A. P. Kamantsev
V. V. Koledov
V. G. Shavrov
L. N. Butvina
A. V. Golovchan
V. I. Val’kov
B. M. Todris
S. V. Taskaev
Publikationsdatum
01.04.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 4/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040068

Weitere Artikel der Ausgabe 4/2022

Physics of Metals and Metallography 4/2022 Zur Ausgabe

ELECTRICAL AND MAGNETIC PROPERTIES

Magnetocaloric Effect in Metals and Alloys