Skip to main content

2022 | OriginalPaper | Buchkapitel

4. Major Challenges Toward the Development of Efficient Thermoelectric Materials: From High Figure-of-Merit (zT) Materials to Devices

verfasst von : S. Neeleshwar, Anjali Saini, Mukesh Kumar Bairwa, Neeta Bisht, Ankita Katre, G. Narsinga Rao

Erschienen in: Nanomaterials for Innovative Energy Systems and Devices

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermoelectric power generators (TEGs) are solid-state energy harvesters that have demonstrated their ability to transform the energy from thermal to electrical form via the Seebeck effect. However, this model of electric generation technology is limited to niche applications, viz., TEG in planetary explorations and the automobile industry. TEG provides one of the unsoiled forms of energy. In recent years, we have seen incredible advancements in TEGs with the use of thermoelectric alloys for power generation in different temperature regimes. The major strategies involved for better performed thermoelectric materials are (i) power factor enhancement through band structure engineering and (ii) reduction in thermal conductivity. These strategies either solo or in combination exhibit high zT thermoelectric materials. However, the development of TEG devices is still not up to the mark. The management of maximum heat transfer through the device is also interesting which needs to be dealt with for developing high-efficiency devices. The mechanism of heat conversion into electricity sounds simple but consists of inherent challenges. The desired value of the device figure of merit (ZT) can only be achieved with a synchronous optimization of electrical and thermal transport properties—electrical conductivity (σ) and Seebeck coefficient (S)—and thermal conductivity (κ). Along with ZT, the performance of TE devices also depends upon their making cost and usability in extreme conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat IEA (2021) Global Energy Review 2021, assessing the effects of economic recoveries on global energy demand and CO2 emissions. IEA, Paris IEA (2021) Global Energy Review 2021, assessing the effects of economic recoveries on global energy demand and CO2 emissions. IEA, Paris
2.
Zurück zum Zitat Soleimani Z, Zoras S, Ceranic B, Shahzad S, Cui Y (2020) Assessments: a review on recent developments of thermoelectric materials for room-temperature applications. Sustain Energy Technol Assess 37:100604 Soleimani Z, Zoras S, Ceranic B, Shahzad S, Cui Y (2020) Assessments: a review on recent developments of thermoelectric materials for room-temperature applications. Sustain Energy Technol Assess 37:100604
3.
Zurück zum Zitat Moreno JJG, Cao J, Fronzi M, Assadi MHN (2020) A review of recent progress in thermoelectric materials through computational methods. Mater Renew Sustain Energy 9(3):1–22 Moreno JJG, Cao J, Fronzi M, Assadi MHN (2020) A review of recent progress in thermoelectric materials through computational methods. Mater Renew Sustain Energy 9(3):1–22
4.
Zurück zum Zitat Prasad NS, Trivedi SB, Palosz W, Rosemeier R, Rosemeier C, Kutcher S, Mayers D, Taylor PJ, Maddux J, Singh J (2012) Development of PbTe material for advanced thermoelectric power generation. In: Energy harvesting and storage: materials, devices, and applications III, p 83770K. International Society for Optics and Photonics Prasad NS, Trivedi SB, Palosz W, Rosemeier R, Rosemeier C, Kutcher S, Mayers D, Taylor PJ, Maddux J, Singh J (2012) Development of PbTe material for advanced thermoelectric power generation. In: Energy harvesting and storage: materials, devices, and applications III, p 83770K. International Society for Optics and Photonics
5.
Zurück zum Zitat Rowe DM (2018) CRC handbook of thermoelectrics. CRC Press Rowe DM (2018) CRC handbook of thermoelectrics. CRC Press
6.
Zurück zum Zitat Seebeck TJ (1896) Magnetische polarisation der metalle und erze durch temperatur-differenz, vol 70. W. Engelmann Seebeck TJ (1896) Magnetische polarisation der metalle und erze durch temperatur-differenz, vol 70. W. Engelmann
7.
Zurück zum Zitat Rowe D, Bhandari C (1983) Modern thermoelectricity, vol 3. Holt Saunders, London Rowe D, Bhandari C (1983) Modern thermoelectricity, vol 3. Holt Saunders, London
8.
Zurück zum Zitat Pollock DD, Rowe D (1995) General principles and theoretical considerations. CRC Press, New York Pollock DD, Rowe D (1995) General principles and theoretical considerations. CRC Press, New York
9.
Zurück zum Zitat Sharma SD (2021) Synthesis and characterization of copper based environment friendly thermoelectric materials. PhD thesis, USBAS, Guru Gobind Singh Indraprastha University Delhi-India Sharma SD (2021) Synthesis and characterization of copper based environment friendly thermoelectric materials. PhD thesis, USBAS, Guru Gobind Singh Indraprastha University Delhi-India
10.
Zurück zum Zitat Chen Z-G, Han G, Yang L, Cheng L, Zou J (2012) Nanostructured thermoelectric materials: current research and future challenge. Prog Nat Sci: Mater Int 22(6):535–549CrossRef Chen Z-G, Han G, Yang L, Cheng L, Zou J (2012) Nanostructured thermoelectric materials: current research and future challenge. Prog Nat Sci: Mater Int 22(6):535–549CrossRef
11.
Zurück zum Zitat Snyder GJ, Toberer ES (2011) Complex thermoelectric materials. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp 101–110 Snyder GJ, Toberer ES (2011) Complex thermoelectric materials. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp 101–110
12.
Zurück zum Zitat Minnich A, Dresselhaus MS, Ren Z, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479CrossRef Minnich A, Dresselhaus MS, Ren Z, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479CrossRef
13.
Zurück zum Zitat Ursell T, Snyder G (2002) Compatibility of segmented thermoelectric generators. In: Twenty-first international conference on thermoelectrics, 2002. Proceedings ICT'02. IEEE, pp 412–417 Ursell T, Snyder G (2002) Compatibility of segmented thermoelectric generators. In: Twenty-first international conference on thermoelectrics, 2002. Proceedings ICT'02. IEEE, pp 412–417
14.
Zurück zum Zitat Snyder GJ, Ursell TS (2003) Thermoelectric efficiency and compatibility. Phys Rev Lett 91(14):148301 Snyder GJ, Ursell TS (2003) Thermoelectric efficiency and compatibility. Phys Rev Lett 91(14):148301
15.
Zurück zum Zitat Maciá E (2004) Compatibility factor of segmented thermoelectric generators based on quasicrystalline alloys. Phys Rev B 70(10):100201 Maciá E (2004) Compatibility factor of segmented thermoelectric generators based on quasicrystalline alloys. Phys Rev B 70(10):100201
16.
Zurück zum Zitat Toberer ES, Zevalkink A, Snyder GJ (2011) Phonon engineering through crystal chemistry. J Mater Chem 21(40):15843–15852CrossRef Toberer ES, Zevalkink A, Snyder GJ (2011) Phonon engineering through crystal chemistry. J Mater Chem 21(40):15843–15852CrossRef
17.
Zurück zum Zitat Tritt T (2000) Recent trends in thermoelectric materials research, part two. Academic Press Tritt T (2000) Recent trends in thermoelectric materials research, part two. Academic Press
18.
Zurück zum Zitat Kittel C (2013) Einführung in die Festkörperphysik. Oldenbourg Wissenschaftsverlag Kittel C (2013) Einführung in die Festkörperphysik. Oldenbourg Wissenschaftsverlag
19.
Zurück zum Zitat Ibach H, Lüth H (2009) Dynamik von Atomen in Kristallen. Festkörperphysik: Einführung in die Grundlagen 81–109 Ibach H, Lüth H (2009) Dynamik von Atomen in Kristallen. Festkörperphysik: Einführung in die Grundlagen 81–109
20.
Zurück zum Zitat Zebarjadi M, Esfarjani K, Dresselhaus M, Ren Z, Chen G (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5(1):5147–5162CrossRef Zebarjadi M, Esfarjani K, Dresselhaus M, Ren Z, Chen G (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5(1):5147–5162CrossRef
21.
Zurück zum Zitat Callaway J, von Baeyer HC (1960) Effect of point imperfections on lattice thermal conductivity. Phys Rev 120(4):1149CrossRef Callaway J, von Baeyer HC (1960) Effect of point imperfections on lattice thermal conductivity. Phys Rev 120(4):1149CrossRef
22.
Zurück zum Zitat Steigmeier E, Abeles B (1964) Scattering of phonons by electrons in germanium-silicon alloys. Phys Rev 136(4A):A1149 Steigmeier E, Abeles B (1964) Scattering of phonons by electrons in germanium-silicon alloys. Phys Rev 136(4A):A1149
23.
Zurück zum Zitat Ma Z, Wei J, Song P, Zhang M, Yang L, Ma J, Liu W, Yang F, Wang X (2021) Review of experimental approaches for improving zT of thermoelectric materials. Mater Sci Semicond Process 121:105303 Ma Z, Wei J, Song P, Zhang M, Yang L, Ma J, Liu W, Yang F, Wang X (2021) Review of experimental approaches for improving zT of thermoelectric materials. Mater Sci Semicond Process 121:105303
24.
Zurück zum Zitat Shakouri A, Bowers JE (1997) Heterostructure integrated thermionic coolers. Appl Phys Lett 71(9):1234–1236CrossRef Shakouri A, Bowers JE (1997) Heterostructure integrated thermionic coolers. Appl Phys Lett 71(9):1234–1236CrossRef
25.
Zurück zum Zitat Mahan GJ (1994) Thermionic refrigeration. J Appl Phys 76(7):4362–4366CrossRef Mahan GJ (1994) Thermionic refrigeration. J Appl Phys 76(7):4362–4366CrossRef
26.
Zurück zum Zitat Dehkordi AM, Zebarjadi M, He J, Tritt TM (2015) Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater Sci Eng Rep 97:1–22CrossRef Dehkordi AM, Zebarjadi M, He J, Tritt TM (2015) Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater Sci Eng Rep 97:1–22CrossRef
27.
Zurück zum Zitat Yang L, Chen ZG, Dargusch MS, Zou J (2018) High performance thermoelectric materials: progress and their applications. Adv Energy Mater 8(6):1701797 Yang L, Chen ZG, Dargusch MS, Zou J (2018) High performance thermoelectric materials: progress and their applications. Adv Energy Mater 8(6):1701797
28.
Zurück zum Zitat Hwang JY, Kim J, Kim HS, Kim SI, Lee KH, Kim SW (2018) Effect of dislocation arrays at grain boundaries on electronic transport properties of bismuth antimony telluride: unified strategy for high thermoelectric performance. Adv Energy Mater 8(20):1800065CrossRef Hwang JY, Kim J, Kim HS, Kim SI, Lee KH, Kim SW (2018) Effect of dislocation arrays at grain boundaries on electronic transport properties of bismuth antimony telluride: unified strategy for high thermoelectric performance. Adv Energy Mater 8(20):1800065CrossRef
29.
Zurück zum Zitat Liang Z, Boland MJ, Butrouna K, Strachan DR, Graham KR (2017) Increased power factors of organic–inorganic nanocomposite thermoelectric materials and the role of energy filtering. J Mater Chem A 5(30):15891–15900CrossRef Liang Z, Boland MJ, Butrouna K, Strachan DR, Graham KR (2017) Increased power factors of organic–inorganic nanocomposite thermoelectric materials and the role of energy filtering. J Mater Chem A 5(30):15891–15900CrossRef
30.
Zurück zum Zitat Dusastre V (2010) Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. World Scientific Dusastre V (2010) Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. World Scientific
31.
Zurück zum Zitat Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff DC, Tang MY, Dresselhaus MS (2008) Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett 8(12):4670–4674CrossRef Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff DC, Tang MY, Dresselhaus MS (2008) Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett 8(12):4670–4674CrossRef
32.
Zurück zum Zitat Zong P-A, Hanus R, Dylla M, Tang Y, Liao J, Zhang Q, Snyder GJ, Chen L (2017) Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ Sci 10(1):183–191CrossRef Zong P-A, Hanus R, Dylla M, Tang Y, Liao J, Zhang Q, Snyder GJ, Chen L (2017) Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ Sci 10(1):183–191CrossRef
33.
Zurück zum Zitat Kanno T, Tamaki H, Sato HK, Kang SD, Ohno S, Imasato K, Kuo JJ, Snyder GJ, Miyazaki Y (2018) Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01. Appl Phys Lett 112(3):033903 Kanno T, Tamaki H, Sato HK, Kang SD, Ohno S, Imasato K, Kuo JJ, Snyder GJ, Miyazaki Y (2018) Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01. Appl Phys Lett 112(3):033903
34.
Zurück zum Zitat Kuo JJ, Kang SD, Imasato K, Tamaki H, Ohno S, Kanno T, Snyder GJ (2018) Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy Environ Sci 11(2):429–434CrossRef Kuo JJ, Kang SD, Imasato K, Tamaki H, Ohno S, Kanno T, Snyder GJ (2018) Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy Environ Sci 11(2):429–434CrossRef
35.
Zurück zum Zitat de Boor J, Compere C, Dasgupta T, Stiewe C, Kolb H, Schmitz A, Mueller E (2014) Fabrication parameters for optimized thermoelectric Mg2Si. J Mater Sci 49(8):3196–3204CrossRef de Boor J, Compere C, Dasgupta T, Stiewe C, Kolb H, Schmitz A, Mueller E (2014) Fabrication parameters for optimized thermoelectric Mg2Si. J Mater Sci 49(8):3196–3204CrossRef
36.
Zurück zum Zitat Qiu Q, Liu Y, Xia K, Fang T, Yu J, Zhao X, Zhu T (2019) Grain boundary scattering of charge transport in n-type (Hf, Zr) CoSb half-Heusler thermoelectric materials. Adv Energy Mater 9(11):1803447CrossRef Qiu Q, Liu Y, Xia K, Fang T, Yu J, Zhao X, Zhu T (2019) Grain boundary scattering of charge transport in n-type (Hf, Zr) CoSb half-Heusler thermoelectric materials. Adv Energy Mater 9(11):1803447CrossRef
37.
Zurück zum Zitat He R, Kraemer D, Mao J, Zeng L, Jie Q, Lan Y, Li C, Shuai J, Kim HS, Liu Y (2016) Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb. Proc Natl Acad Sci 113(48):13576–13581CrossRef He R, Kraemer D, Mao J, Zeng L, Jie Q, Lan Y, Li C, Shuai J, Kim HS, Liu Y (2016) Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb. Proc Natl Acad Sci 113(48):13576–13581CrossRef
38.
Zurück zum Zitat Wei T-R, Tan G, Zhang X, Wu C-F, Li J-F, Dravid VP, Snyder GJ, Kanatzidis MG (2016) Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe. J Am Chem Soc 138(28):8875–8882CrossRef Wei T-R, Tan G, Zhang X, Wu C-F, Li J-F, Dravid VP, Snyder GJ, Kanatzidis MG (2016) Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe. J Am Chem Soc 138(28):8875–8882CrossRef
39.
Zurück zum Zitat Slade TJ, Bailey TP, Grovogui JA, Hua X, Zhang X, Kuo JJ, Hadar I, Snyder GJ, Wolverton C, Dravid VP (2019) High thermoelectric performance in PbSe–NaSbSe2 alloys from valence band convergence and low thermal conductivity. Adv Energy Mater 9(30):1901377CrossRef Slade TJ, Bailey TP, Grovogui JA, Hua X, Zhang X, Kuo JJ, Hadar I, Snyder GJ, Wolverton C, Dravid VP (2019) High thermoelectric performance in PbSe–NaSbSe2 alloys from valence band convergence and low thermal conductivity. Adv Energy Mater 9(30):1901377CrossRef
40.
Zurück zum Zitat Kuo JJ, Wood M, Slade TJ, Kanatzidis MG, Snyder GJ (2020) Systematic over-estimation of lattice thermal conductivity in materials with electrically-resistive grain boundaries. Energy Environ Sci 13(4):1250–1258CrossRef Kuo JJ, Wood M, Slade TJ, Kanatzidis MG, Snyder GJ (2020) Systematic over-estimation of lattice thermal conductivity in materials with electrically-resistive grain boundaries. Energy Environ Sci 13(4):1250–1258CrossRef
41.
Zurück zum Zitat Xiao Y, Zhao L-D (2018) Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater 3(1):1–12 Xiao Y, Zhao L-D (2018) Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater 3(1):1–12
42.
Zurück zum Zitat Slack GA, Rowe D (1995) CRC handbook of thermoelectrics. CRC Press, Boca Raton, FL Slack GA, Rowe D (1995) CRC handbook of thermoelectrics. CRC Press, Boca Raton, FL
43.
Zurück zum Zitat Blandin A, Friedel J (1959) Propriétés magnétiques des alliages dilués. Interactions magnétiques et antiferromagnétisme dans les alliages du type métal noble-métal de transition. J Phys Radium 20(2–3):160–168 Blandin A, Friedel J (1959) Propriétés magnétiques des alliages dilués. Interactions magnétiques et antiferromagnétisme dans les alliages du type métal noble-métal de transition. J Phys Radium 20(2–3):160–168
44.
Zurück zum Zitat Sakurai JJ, Commins ED (1995) Modern quantum mechanics, revised edn. American Association of Physics Teachers Sakurai JJ, Commins ED (1995) Modern quantum mechanics, revised edn. American Association of Physics Teachers
45.
Zurück zum Zitat Nolas GS, Sharp J, Goldsmid J (2001) Thermoelectrics: basic principles and new materials developments, vol 45. Springer Science & Business Media Nolas GS, Sharp J, Goldsmid J (2001) Thermoelectrics: basic principles and new materials developments, vol 45. Springer Science & Business Media
46.
Zurück zum Zitat Dingle R, Störmer H, Gossard A, Wiegmann W (1978) Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl Phys Lett 33(7):665–667CrossRef Dingle R, Störmer H, Gossard A, Wiegmann W (1978) Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl Phys Lett 33(7):665–667CrossRef
47.
Zurück zum Zitat Daembkes H (1991) Modulation-doped field-effect transistors: principles, design, and technology, vol 1. IEEE Daembkes H (1991) Modulation-doped field-effect transistors: principles, design, and technology, vol 1. IEEE
48.
Zurück zum Zitat Schäffler F (1997) Technology: high-mobility Si and Ge structures. Semicond Sci Technol 12(12):1515CrossRef Schäffler F (1997) Technology: high-mobility Si and Ge structures. Semicond Sci Technol 12(12):1515CrossRef
49.
Zurück zum Zitat Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M, Chen G, Ren Z (2012) Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett 12(4):2077–2082CrossRef Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M, Chen G, Ren Z (2012) Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett 12(4):2077–2082CrossRef
50.
Zurück zum Zitat Gibbs ZM (2015) Band engineering in thermoelectric materials using optical, electronic, and ab-initio computed properties. California Institute of Technology Gibbs ZM (2015) Band engineering in thermoelectric materials using optical, electronic, and ab-initio computed properties. California Institute of Technology
51.
Zurück zum Zitat Singh D, Ahuja R (2021) Dimensionality effects in high‐performance thermoelectric materials: computational and experimental progress in energy harvesting applications. Wiley Interdiscip Rev: Comput Mol Sci e1547 Singh D, Ahuja R (2021) Dimensionality effects in high‐performance thermoelectric materials: computational and experimental progress in energy harvesting applications. Wiley Interdiscip Rev: Comput Mol Sci e1547
52.
Zurück zum Zitat Wang Y, Liu W-D, Shi X-L, Hong M, Wang L-J, Li M, Wang H, Zou J, Chen Z-G (2020) Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction. Chem Eng J 391:123513 Wang Y, Liu W-D, Shi X-L, Hong M, Wang L-J, Li M, Wang H, Zou J, Chen Z-G (2020) Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction. Chem Eng J 391:123513
53.
Zurück zum Zitat Arora S, Jaimini V, Srivastava S, Vijay Y (2017) Properties of nanostructure bismuth telluride thin films using thermal evaporation. J Nanotechnol 2017 Arora S, Jaimini V, Srivastava S, Vijay Y (2017) Properties of nanostructure bismuth telluride thin films using thermal evaporation. J Nanotechnol 2017
54.
Zurück zum Zitat Hong M, Chen Z-G, Zou J (2018) Fundamental and progress of Bi2Te3-based thermoelectric materials. Chin Phys B 27(4):048403 Hong M, Chen Z-G, Zou J (2018) Fundamental and progress of Bi2Te3-based thermoelectric materials. Chin Phys B 27(4):048403
55.
Zurück zum Zitat Lin J-M, Chen Y-C, Lin C-P (2013) Annealing effect on the thermoelectric properties of Bi2Te3 thin films prepared by thermal evaporation method. J Nanotechnol 2013 Lin J-M, Chen Y-C, Lin C-P (2013) Annealing effect on the thermoelectric properties of Bi2Te3 thin films prepared by thermal evaporation method. J Nanotechnol 2013
56.
Zurück zum Zitat Wang X, He H, Wang N, Miao L (2013) Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering. Appl Surf Sci 276:539–542CrossRef Wang X, He H, Wang N, Miao L (2013) Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering. Appl Surf Sci 276:539–542CrossRef
57.
Zurück zum Zitat Delaizir G, Bernard-Granger G, Monnier J, Grodzki R, Kim-Hak O, Szkutnik P-D, Soulier M, Saunier S, Goeuriot D, Rouleau O (2012) A comparative study of spark plasma sintering (SPS), hot isostatic pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater Res Bull 47(8):1954–1960CrossRef Delaizir G, Bernard-Granger G, Monnier J, Grodzki R, Kim-Hak O, Szkutnik P-D, Soulier M, Saunier S, Goeuriot D, Rouleau O (2012) A comparative study of spark plasma sintering (SPS), hot isostatic pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater Res Bull 47(8):1954–1960CrossRef
58.
Zurück zum Zitat Chen B, Li J, Wu M, Hu L, Liu F, Ao W, Li Y, Xie H, Zhang C (2019) Simultaneous enhancement of the thermoelectric and mechanical performance in one-step sintered n-type Bi2Te3-based alloys via a facile MgB2 doping strategy. ACS Appl Mater Interfaces 11(49):45746–45754CrossRef Chen B, Li J, Wu M, Hu L, Liu F, Ao W, Li Y, Xie H, Zhang C (2019) Simultaneous enhancement of the thermoelectric and mechanical performance in one-step sintered n-type Bi2Te3-based alloys via a facile MgB2 doping strategy. ACS Appl Mater Interfaces 11(49):45746–45754CrossRef
59.
Zurück zum Zitat Lee CH, Shin HS, Yeo DH, Nahm S (2020) Effect of heating rate on bulk density and microstructure in Bi2Te2.7Se0.3 sintering. J Electron Mater 49(1):736–742 Lee CH, Shin HS, Yeo DH, Nahm S (2020) Effect of heating rate on bulk density and microstructure in Bi2Te2.7Se0.3 sintering. J Electron Mater 49(1):736–742
60.
Zurück zum Zitat Yoo B, Huang C-K, Lim J, Herman J, Ryan M, Fleurial J-P, Myung N (2005) Electrochemically deposited thermoelectric n-type Bi2Te3 thin films. Electrochim Acta 50(22):4371–4377CrossRef Yoo B, Huang C-K, Lim J, Herman J, Ryan M, Fleurial J-P, Myung N (2005) Electrochemically deposited thermoelectric n-type Bi2Te3 thin films. Electrochim Acta 50(22):4371–4377CrossRef
61.
Zurück zum Zitat Kim K-C, Kwon B, Kim HJ, Baek S-H, Hyun D-B, Kim SK, Kim J-S (2015) Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition. Appl Surf Sci 353:232–237CrossRef Kim K-C, Kwon B, Kim HJ, Baek S-H, Hyun D-B, Kim SK, Kim J-S (2015) Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition. Appl Surf Sci 353:232–237CrossRef
62.
Zurück zum Zitat Dauscher A, Thomy A, Scherrer H (1996) Pulsed laser deposition of Bi2Te3 thin films. Thin Solid Films 280(1–2):61–66CrossRef Dauscher A, Thomy A, Scherrer H (1996) Pulsed laser deposition of Bi2Te3 thin films. Thin Solid Films 280(1–2):61–66CrossRef
63.
Zurück zum Zitat Scidone L, Diliberto S, Stein N, Boulanger C, Lecuire J (2005) Electroless method for Bi2Te3 film deposition. Mater Lett 59(7):746–748CrossRef Scidone L, Diliberto S, Stein N, Boulanger C, Lecuire J (2005) Electroless method for Bi2Te3 film deposition. Mater Lett 59(7):746–748CrossRef
64.
Zurück zum Zitat Kumar S, Singh S, Dhawan PK, Yadav R, Khare N (2018) Effect of graphene nanofillers on the enhanced thermoelectric properties of Bi2Te3 nanosheets: elucidating the role of interface in de-coupling the electrical and thermal characteristics. Nanotechnology 29(13):135703 Kumar S, Singh S, Dhawan PK, Yadav R, Khare N (2018) Effect of graphene nanofillers on the enhanced thermoelectric properties of Bi2Te3 nanosheets: elucidating the role of interface in de-coupling the electrical and thermal characteristics. Nanotechnology 29(13):135703
65.
Zurück zum Zitat Deng Y, Zhou X, Wei G, Liu J, Nan C-W, Zhao S (2002) Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J Phys Chem Solids 63(11):2119–2121 Deng Y, Zhou X, Wei G, Liu J, Nan C-W, Zhao S (2002) Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J Phys Chem Solids 63(11):2119–2121
66.
Zurück zum Zitat Wang Y, Liu W-D, Gao H, Wang L-J, Li M, Shi X-L, Hong M, Wang H, Zou J, Chen Z-G (2019) High porosity in nanostructured n-type Bi2Te3 obtaining ultralow lattice thermal conductivity. ACS Appl Mater Interfaces 11(34):31237–31244CrossRef Wang Y, Liu W-D, Gao H, Wang L-J, Li M, Shi X-L, Hong M, Wang H, Zou J, Chen Z-G (2019) High porosity in nanostructured n-type Bi2Te3 obtaining ultralow lattice thermal conductivity. ACS Appl Mater Interfaces 11(34):31237–31244CrossRef
67.
Zurück zum Zitat Bao D, Chen J, Yu Y, Liu W, Huang L, Han G, Tang J, Zhou D, Yang L, Chen Z-G (2020) Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chem Eng J 388:124295 Bao D, Chen J, Yu Y, Liu W, Huang L, Han G, Tang J, Zhou D, Yang L, Chen Z-G (2020) Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chem Eng J 388:124295
68.
Zurück zum Zitat Zang J, Chen J, Chen Z, Li Y, Zhang J, Song T, Sun B (2021) Printed flexible thermoelectric materials and devices. J Mater Chem A Zang J, Chen J, Chen Z, Li Y, Zhang J, Song T, Sun B (2021) Printed flexible thermoelectric materials and devices. J Mater Chem A
69.
Zurück zum Zitat Mamur H, Bhuiyan M, Korkmaz F, Nil M (2018) A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew Sustain Energy Rev 82:4159–4169CrossRef Mamur H, Bhuiyan M, Korkmaz F, Nil M (2018) A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew Sustain Energy Rev 82:4159–4169CrossRef
70.
Zurück zum Zitat Wu D, Zhao L-D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J-F, Zhu Y (2015) Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy Environ Sci 8(7):2056–2068CrossRef Wu D, Zhao L-D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J-F, Zhu Y (2015) Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy Environ Sci 8(7):2056–2068CrossRef
71.
Zurück zum Zitat Pei Y, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ (2011) High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Func Mater 21(2):241–249CrossRef Pei Y, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ (2011) High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Func Mater 21(2):241–249CrossRef
72.
Zurück zum Zitat Wu H, Zhao L-D, Zheng F, Wu D, Pei Y, Tong X, Kanatzidis M, He J (2014) Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun 5(1):1–9 Wu H, Zhao L-D, Zheng F, Wu D, Pei Y, Tong X, Kanatzidis M, He J (2014) Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun 5(1):1–9
73.
Zurück zum Zitat Sarkar S, Zhang X, Hao S, Hua X, Bailey TP, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2018) Dual alloying strategy to achieve a high thermoelectric figure of merit and lattice hardening in p-type nanostructured PbTe. ACS Energy Lett 3(10):2593–2601CrossRef Sarkar S, Zhang X, Hao S, Hua X, Bailey TP, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2018) Dual alloying strategy to achieve a high thermoelectric figure of merit and lattice hardening in p-type nanostructured PbTe. ACS Energy Lett 3(10):2593–2601CrossRef
74.
Zurück zum Zitat Tan G, Shi F, Hao S, Zhao L-D, Chi H, Zhang X, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2016) Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat Commun 7(1):1–9 Tan G, Shi F, Hao S, Zhao L-D, Chi H, Zhang X, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2016) Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat Commun 7(1):1–9
75.
Zurück zum Zitat Sheng C, Fan D, Liu H (2020) High thermoelectric performance can be achieved in two-dimensional (PbTe)2 layer. Phys Lett A 384(2):126044 Sheng C, Fan D, Liu H (2020) High thermoelectric performance can be achieved in two-dimensional (PbTe)2 layer. Phys Lett A 384(2):126044
76.
Zurück zum Zitat Biswas K, He J, Blum ID, Wu C-I, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nanotechnology 489(7416):414–418 Biswas K, He J, Blum ID, Wu C-I, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nanotechnology 489(7416):414–418
77.
Zurück zum Zitat Han C, Sun Q, Li Z, Dou SX (2016) Thermoelectric enhancement of different kinds of metal chalcogenides. Adv Energy Mater 6(15):1600498CrossRef Han C, Sun Q, Li Z, Dou SX (2016) Thermoelectric enhancement of different kinds of metal chalcogenides. Adv Energy Mater 6(15):1600498CrossRef
78.
Zurück zum Zitat Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48(46):8616–8639CrossRef Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48(46):8616–8639CrossRef
79.
Zurück zum Zitat Zhong Y, Tang J, Liu H, Chen Z, Lin L, Ren D, Liu B, Ang R (2020) Optimized strategies for advancing n-type PbTe thermoelectrics: a review. ACS Appl Mater Interfaces 12(44):49323–49334CrossRef Zhong Y, Tang J, Liu H, Chen Z, Lin L, Ren D, Liu B, Ang R (2020) Optimized strategies for advancing n-type PbTe thermoelectrics: a review. ACS Appl Mater Interfaces 12(44):49323–49334CrossRef
80.
Zurück zum Zitat Moshwan R, Yang L, Zou J, Chen ZG (2017) Eco-friendly SnTe thermoelectric materials: progress and future challenges. Adv Func Mater 27(43):1703278CrossRef Moshwan R, Yang L, Zou J, Chen ZG (2017) Eco-friendly SnTe thermoelectric materials: progress and future challenges. Adv Func Mater 27(43):1703278CrossRef
81.
Zurück zum Zitat Zheng L, Li W, Lin S, Li J, Chen Z, Pei Y (2017) Interstitial defects improving thermoelectric SnTe in addition to band convergence. ACS Energy Lett 2(3):563–568CrossRef Zheng L, Li W, Lin S, Li J, Chen Z, Pei Y (2017) Interstitial defects improving thermoelectric SnTe in addition to band convergence. ACS Energy Lett 2(3):563–568CrossRef
82.
Zurück zum Zitat Inoue T, Hiramatsu H, Hosono H, Kamiya T (2015) Heteroepitaxial growth of SnSe films by pulsed laser deposition using Se-rich targets. J Appl Phys 118(20):205302 Inoue T, Hiramatsu H, Hosono H, Kamiya T (2015) Heteroepitaxial growth of SnSe films by pulsed laser deposition using Se-rich targets. J Appl Phys 118(20):205302
83.
Zurück zum Zitat Subramanian B, Sanjeeviraja C, Jayachandran M (2002) Brush plating of tin (II) selenide thin films. J Cryst Growth 234(2–3):421–426CrossRef Subramanian B, Sanjeeviraja C, Jayachandran M (2002) Brush plating of tin (II) selenide thin films. J Cryst Growth 234(2–3):421–426CrossRef
84.
Zurück zum Zitat Parenteau M, Carlone C (1990) Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors. Phys Rev B 41(8):5227CrossRef Parenteau M, Carlone C (1990) Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors. Phys Rev B 41(8):5227CrossRef
85.
Zurück zum Zitat Shi G, Kioupakis E (2015) Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. J Appl Phys 117(6):065103 Shi G, Kioupakis E (2015) Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. J Appl Phys 117(6):065103
86.
Zurück zum Zitat Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nanotechnology 508(7496):373–377 Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nanotechnology 508(7496):373–377
87.
Zurück zum Zitat Nguyen VQ, Kim J, Cho S (2018) A review of SnSe: growth and thermoelectric properties. J Korean Phys Soc 72(8):841–857CrossRef Nguyen VQ, Kim J, Cho S (2018) A review of SnSe: growth and thermoelectric properties. J Korean Phys Soc 72(8):841–857CrossRef
88.
Zurück zum Zitat Sassi S, Candolfi C, Vaney J-B, Ohorodniichuk V, Masschelein P, Dauscher A, Lenoir B (2014) Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl Phys Lett 104(21):212105 Sassi S, Candolfi C, Vaney J-B, Ohorodniichuk V, Masschelein P, Dauscher A, Lenoir B (2014) Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl Phys Lett 104(21):212105
89.
Zurück zum Zitat Chen C-L, Wang H, Chen Y-Y, Day T, Snyder GJ (2014) Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A 2(29):11171–11176CrossRef Chen C-L, Wang H, Chen Y-Y, Day T, Snyder GJ (2014) Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A 2(29):11171–11176CrossRef
90.
Zurück zum Zitat Zhang Q, Chere EK, Sun J, Cao F, Dahal K, Chen S, Chen G, Ren Z (2015) Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping. Adv Energy Mater 5(12):1500360CrossRef Zhang Q, Chere EK, Sun J, Cao F, Dahal K, Chen S, Chen G, Ren Z (2015) Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping. Adv Energy Mater 5(12):1500360CrossRef
91.
Zurück zum Zitat Tang G, Wen Q, Yang T, Cao Y, Wei W, Wang Z, Zhang Z, Li Y (2017) Rock-salt-type nanoprecipitates lead to high thermoelectric performance in undoped polycrystalline SnSe. RSC Adv 7(14):8258–8263CrossRef Tang G, Wen Q, Yang T, Cao Y, Wei W, Wang Z, Zhang Z, Li Y (2017) Rock-salt-type nanoprecipitates lead to high thermoelectric performance in undoped polycrystalline SnSe. RSC Adv 7(14):8258–8263CrossRef
92.
Zurück zum Zitat Wang X, Xu J, Liu G, Fu Y, Liu Z, Tan X, Shao H, Jiang H, Tan T, Jiang J (2016) Optimization of thermoelectric properties in n-type SnSe doped with BiCl3. Appl Phys Lett 108(8):083902 Wang X, Xu J, Liu G, Fu Y, Liu Z, Tan X, Shao H, Jiang H, Tan T, Jiang J (2016) Optimization of thermoelectric properties in n-type SnSe doped with BiCl3. Appl Phys Lett 108(8):083902
93.
Zurück zum Zitat Han Y-M, Zhao J, Zhou M, Jiang X-X, Leng H-Q, Li L-F (2015) Thermoelectric performance of SnS and SnS–SnSe solid solution. J Mater Chem A 3(8):4555–4559CrossRef Han Y-M, Zhao J, Zhou M, Jiang X-X, Leng H-Q, Li L-F (2015) Thermoelectric performance of SnS and SnS–SnSe solid solution. J Mater Chem A 3(8):4555–4559CrossRef
94.
Zurück zum Zitat Wei T-R, Wu C-F, Zhang X, Tan Q, Sun L, Pan Y, Li J-F (2015) Thermoelectric transport properties of pristine and Na-doped SnSe1–xTex polycrystals. Phys Chem Chem Phys 17(44):30102–30109CrossRef Wei T-R, Wu C-F, Zhang X, Tan Q, Sun L, Pan Y, Li J-F (2015) Thermoelectric transport properties of pristine and Na-doped SnSe1–xTex polycrystals. Phys Chem Chem Phys 17(44):30102–30109CrossRef
95.
Zurück zum Zitat Li Y, Shi X, Ren D, Chen J, Chen L (2015) Investigation of the anisotropic thermoelectric properties of oriented polycrystalline SnSe. Energies 8(7):6275–6285CrossRef Li Y, Shi X, Ren D, Chen J, Chen L (2015) Investigation of the anisotropic thermoelectric properties of oriented polycrystalline SnSe. Energies 8(7):6275–6285CrossRef
96.
Zurück zum Zitat Chen S, Cai K, Zhao W (2012) The effect of Te doping on the electronic structure and thermoelectric properties of SnSe. Phys B 407(21):4154–4159CrossRef Chen S, Cai K, Zhao W (2012) The effect of Te doping on the electronic structure and thermoelectric properties of SnSe. Phys B 407(21):4154–4159CrossRef
97.
Zurück zum Zitat Kim JH, Oh S, Kim YM, So HS, Lee H, Rhyee J-S, Park S-D, Kim S-J (2016) Indium substitution effect on thermoelectric and optical properties of Sn1−xInxSe compounds. J Alloy Compd 682:785–790CrossRef Kim JH, Oh S, Kim YM, So HS, Lee H, Rhyee J-S, Park S-D, Kim S-J (2016) Indium substitution effect on thermoelectric and optical properties of Sn1−xInxSe compounds. J Alloy Compd 682:785–790CrossRef
98.
Zurück zum Zitat Li J, Li D, Qin X, Zhang J (2017) Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scripta Mater 126:6–10CrossRef Li J, Li D, Qin X, Zhang J (2017) Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scripta Mater 126:6–10CrossRef
99.
Zurück zum Zitat Chen Z-G, Shi X, Zhao L-D, Zou J (2018) High-performance SnSe thermoelectric materials: progress and future challenge. Prog Mater Sci 97:283–346CrossRef Chen Z-G, Shi X, Zhao L-D, Zou J (2018) High-performance SnSe thermoelectric materials: progress and future challenge. Prog Mater Sci 97:283–346CrossRef
100.
Zurück zum Zitat Madelung O, Rössler U, Schulz M (1998) Non-tetrahedrally bonded elements and binary compounds I, chapter lead telluride (PbTe) crystal structure, lattice parameters, thermal expansion. Springer Berlin Heidelberg, Berlin, Heidelberg Madelung O, Rössler U, Schulz M (1998) Non-tetrahedrally bonded elements and binary compounds I, chapter lead telluride (PbTe) crystal structure, lattice parameters, thermal expansion. Springer Berlin Heidelberg, Berlin, Heidelberg
101.
Zurück zum Zitat Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y, Pei Y (2017) Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Adv Mater 29(17):1605887CrossRef Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y, Pei Y (2017) Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Adv Mater 29(17):1605887CrossRef
102.
Zurück zum Zitat Chang C, Wu M, He D, Pei Y, Wu C-F, Wu X, Yu H, Zhu F, Wang K, Chen Y (2018) 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360(6390):778–783CrossRef Chang C, Wu M, He D, Pei Y, Wu C-F, Wu X, Yu H, Zhu F, Wang K, Chen Y (2018) 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360(6390):778–783CrossRef
103.
Zurück zum Zitat Olvera A, Moroz N, Sahoo P, Ren P, Bailey T, Page A, Uher C, Poudeu P (2017) Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci 10(7):1668–1676CrossRef Olvera A, Moroz N, Sahoo P, Ren P, Bailey T, Page A, Uher C, Poudeu P (2017) Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci 10(7):1668–1676CrossRef
104.
Zurück zum Zitat Sui J, Li J, He J, Pei Y-L, Berardan D, Wu H, Dragoe N, Cai W, Zhao L-D (2013) Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ Sci 6(10):2916–2920CrossRef Sui J, Li J, He J, Pei Y-L, Berardan D, Wu H, Dragoe N, Cai W, Zhao L-D (2013) Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ Sci 6(10):2916–2920CrossRef
105.
Zurück zum Zitat Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y, Pei Y (2018) Manipulation of band structure and interstitial defects for improving thermoelectric SnTe. Adv Func Mater 28(34):1803586CrossRef Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y, Pei Y (2018) Manipulation of band structure and interstitial defects for improving thermoelectric SnTe. Adv Func Mater 28(34):1803586CrossRef
106.
Zurück zum Zitat Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230):109–114CrossRef Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230):109–114CrossRef
107.
Zurück zum Zitat Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y (2019) Lattice strain advances thermoelectrics. Joule 3(5):1276–1288CrossRef Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y (2019) Lattice strain advances thermoelectrics. Joule 3(5):1276–1288CrossRef
108.
Zurück zum Zitat Hong M, Wang Y, Feng T, Sun Q, Xu S, Matsumura S, Pantelides ST, Zou J, Chen Z-G (2018) Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1–xSbxTe with Zn-alloying-induced band alignment. J Am Chem Soc 141(4):1742–1748CrossRef Hong M, Wang Y, Feng T, Sun Q, Xu S, Matsumura S, Pantelides ST, Zou J, Chen Z-G (2018) Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1–xSbxTe with Zn-alloying-induced band alignment. J Am Chem Soc 141(4):1742–1748CrossRef
109.
Zurück zum Zitat Bathula S, Jayasimhadri M, Singh N, Srivastava A, Pulikkotil J, Dhar A, Budhani R (2012) Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys. Appl Phys Lett 101(21):213902 Bathula S, Jayasimhadri M, Singh N, Srivastava A, Pulikkotil J, Dhar A, Budhani R (2012) Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys. Appl Phys Lett 101(21):213902
110.
Zurück zum Zitat Zhang F, Chen C, Yao H, Bai F, Yin L, Li X, Li S, Xue W, Wang Y, Cao F (2020) High-performance N-type Mg3Sb2 towards thermoelectric application near room temperature. Adv Func Mater 30(5):1906143CrossRef Zhang F, Chen C, Yao H, Bai F, Yin L, Li X, Li S, Xue W, Wang Y, Cao F (2020) High-performance N-type Mg3Sb2 towards thermoelectric application near room temperature. Adv Func Mater 30(5):1906143CrossRef
111.
Zurück zum Zitat Ibánez M, Luo Z, Genc A, Piveteau L, Ortega S, Cadavid D, Dobrozhan O, Liu Y, Nachtegaal M, Zebarjadi M (2016) High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat Commun 7(1):1–7CrossRef Ibánez M, Luo Z, Genc A, Piveteau L, Ortega S, Cadavid D, Dobrozhan O, Liu Y, Nachtegaal M, Zebarjadi M (2016) High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat Commun 7(1):1–7CrossRef
112.
Zurück zum Zitat Rogl G, Grytsiv A, Rogl P, Peranio N, Bauer E, Zehetbauer M, Eibl O (2014) N-type skutterudites (R, Ba, Yb) yCo4Sb12 (R= Sr, la, mm, DD, SrMm, SrDD) approaching ZT≈ 2.0. Adv Mater 63:30–43 Rogl G, Grytsiv A, Rogl P, Peranio N, Bauer E, Zehetbauer M, Eibl O (2014) N-type skutterudites (R, Ba, Yb) yCo4Sb12 (R= Sr, la, mm, DD, SrMm, SrDD) approaching ZT≈ 2.0. Adv Mater 63:30–43
113.
Zurück zum Zitat Yu J, Fu C, Liu Y, Xia K, Aydemir U, Chasapis TC, Snyder GJ, Zhao X, Zhu T (2018) Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Adv Energy Mater 8(1):1701313CrossRef Yu J, Fu C, Liu Y, Xia K, Aydemir U, Chasapis TC, Snyder GJ, Zhao X, Zhu T (2018) Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Adv Energy Mater 8(1):1701313CrossRef
114.
Zurück zum Zitat Rogers L (1968) Valence band structure of SnTe. J Phys D Appl Phys 1(7):845CrossRef Rogers L (1968) Valence band structure of SnTe. J Phys D Appl Phys 1(7):845CrossRef
115.
Zurück zum Zitat Tan G, Zhao L-D, Shi F, Doak JW, Lo S-H, Sun H, Wolverton C, Dravid VP, Uher C, Kanatzidis MG (2014) High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J Am Chem Soc 136(19):7006–7017CrossRef Tan G, Zhao L-D, Shi F, Doak JW, Lo S-H, Sun H, Wolverton C, Dravid VP, Uher C, Kanatzidis MG (2014) High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J Am Chem Soc 136(19):7006–7017CrossRef
116.
Zurück zum Zitat Li W, Wu Y, Lin S, Chen Z, Li J, Zhang X, Zheng L, Pei Y (2017) Advances in environment-friendly SnTe thermoelectrics. ACS Energy Lett 2(10):2349–2355CrossRef Li W, Wu Y, Lin S, Chen Z, Li J, Zhang X, Zheng L, Pei Y (2017) Advances in environment-friendly SnTe thermoelectrics. ACS Energy Lett 2(10):2349–2355CrossRef
117.
Zurück zum Zitat Hwang J, Kim H, Han M-K, Hong J, Shim J-H, Tak J-Y, Lim YS, Jin Y, Kim J, Park H (2019) Gigantic phonon-scattering cross section to enhance thermoelectric performance in bulk crystals. ACS Nano 13(7):8347–8355CrossRef Hwang J, Kim H, Han M-K, Hong J, Shim J-H, Tak J-Y, Lim YS, Jin Y, Kim J, Park H (2019) Gigantic phonon-scattering cross section to enhance thermoelectric performance in bulk crystals. ACS Nano 13(7):8347–8355CrossRef
118.
Zurück zum Zitat Li S, Li X, Ren Z, Zhang Q (2018) Recent progress towards high performance of tin chalcogenide thermoelectric materials. J Mater Chem A 6(6):2432–2448CrossRef Li S, Li X, Ren Z, Zhang Q (2018) Recent progress towards high performance of tin chalcogenide thermoelectric materials. J Mater Chem A 6(6):2432–2448CrossRef
119.
Zurück zum Zitat Zhang Q, Tan X, Guo Z, Wang H, Xiong C, Man N, Shi F, Hu H, Liu G-Q, Jiang J (2021) Improvement of thermoelectric properties of SnTe by MnBi codoping. Chem Eng J 421:127795 Zhang Q, Tan X, Guo Z, Wang H, Xiong C, Man N, Shi F, Hu H, Liu G-Q, Jiang J (2021) Improvement of thermoelectric properties of SnTe by MnBi codoping. Chem Eng J 421:127795
120.
Zurück zum Zitat Beattie A (1969) Temperature dependence of the elastic constants of tin telluride. J Appl Phys 40(12):4818–4821CrossRef Beattie A (1969) Temperature dependence of the elastic constants of tin telluride. J Appl Phys 40(12):4818–4821CrossRef
121.
Zurück zum Zitat Madelung O, Rössler U, Schulz M (1998) Springer materials; sm_lbs_978-3-540-31360-1_68. Springer, Heidelberg Madelung O, Rössler U, Schulz M (1998) Springer materials; sm_lbs_978-3-540-31360-1_68. Springer, Heidelberg
122.
Zurück zum Zitat Santos R, Yamini SA, Dou SX (2018) Recent progress in magnesium-based thermoelectric materials. J Mater Chem A 6(8):3328–3341CrossRef Santos R, Yamini SA, Dou SX (2018) Recent progress in magnesium-based thermoelectric materials. J Mater Chem A 6(8):3328–3341CrossRef
123.
Zurück zum Zitat Nieroda P, Kolezynski A, Leszczynski J, Nieroda J, Pasierb P (2019) The structural, microstructural and thermoelectric properties of Mg2Si synthesized by SPS method under excess Mg content conditions. J Alloy Compd 775:138–149CrossRef Nieroda P, Kolezynski A, Leszczynski J, Nieroda J, Pasierb P (2019) The structural, microstructural and thermoelectric properties of Mg2Si synthesized by SPS method under excess Mg content conditions. J Alloy Compd 775:138–149CrossRef
124.
Zurück zum Zitat Li J, Li D, Xu W, Qin X, Li Y, Zhang J (2016) Enhanced thermoelectric performance of SnSe based composites with carbon black nanoinclusions. Appl Phys Lett 109(17):173902 Li J, Li D, Xu W, Qin X, Li Y, Zhang J (2016) Enhanced thermoelectric performance of SnSe based composites with carbon black nanoinclusions. Appl Phys Lett 109(17):173902
125.
Zurück zum Zitat Frederikse H (2008) Elastic constants of single crystals. Handb Chem Phys 12:33–38 Frederikse H (2008) Elastic constants of single crystals. Handb Chem Phys 12:33–38
126.
Zurück zum Zitat Zhang H, Hobbis D, Nolas GS, LeBlanc S (2018) Laser additive manufacturing of powdered bismuth telluride. J Mater Res 33(23):4031–4039CrossRef Zhang H, Hobbis D, Nolas GS, LeBlanc S (2018) Laser additive manufacturing of powdered bismuth telluride. J Mater Res 33(23):4031–4039CrossRef
127.
Zurück zum Zitat Talebi T, Ghomashchi R, Talemi P, Aminorroaya S (2019) Thermoelectric performance of electrophoretically deposited p-type Bi2Te3 film. Appl Surf Sci 477:27–31CrossRef Talebi T, Ghomashchi R, Talemi P, Aminorroaya S (2019) Thermoelectric performance of electrophoretically deposited p-type Bi2Te3 film. Appl Surf Sci 477:27–31CrossRef
128.
Zurück zum Zitat Kavei G, Ahmadi K, Shadmehr A-K, Kavei A (2011) (Bi2Te3)0.25 (Sb2Te3)0.75 crystal structure improvements with excess Te as studied by AFM, SEM, EBSD and XRD. Mater Sci Poland 29(2):143–151CrossRef Kavei G, Ahmadi K, Shadmehr A-K, Kavei A (2011) (Bi2Te3)0.25 (Sb2Te3)0.75 crystal structure improvements with excess Te as studied by AFM, SEM, EBSD and XRD. Mater Sci Poland 29(2):143–151CrossRef
129.
Zurück zum Zitat Korkosz RJ, Chasapis TC, Lo S-H, Doak JW, Kim YJ, Wu C-I, Hatzikraniotis E, Hogan TP, Seidman DN, Wolverton C (2014) High ZT in p-type (PbTe)1–2x (PbSe)x (PbS)x thermoelectric materials. J Am Chem Soc 136(8):3225–3237CrossRef Korkosz RJ, Chasapis TC, Lo S-H, Doak JW, Kim YJ, Wu C-I, Hatzikraniotis E, Hogan TP, Seidman DN, Wolverton C (2014) High ZT in p-type (PbTe)1–2x (PbSe)x (PbS)x thermoelectric materials. J Am Chem Soc 136(8):3225–3237CrossRef
130.
Zurück zum Zitat Dow HS, Na M, Kim SJ, Lee JW (2019) Roles of AgSbTe2 nanostructures in PbTe: controlling thermal properties of chalcogenides. J Mater Chem C 7(13):3787–3794CrossRef Dow HS, Na M, Kim SJ, Lee JW (2019) Roles of AgSbTe2 nanostructures in PbTe: controlling thermal properties of chalcogenides. J Mater Chem C 7(13):3787–3794CrossRef
131.
Zurück zum Zitat de Boor J, Dasgupta T, Saparamadu U, Müller E, Ren Z (2017) Recent progress in p-type thermoelectric magnesium silicide based solid solutions. Mater Today Energy 4:105–121CrossRef de Boor J, Dasgupta T, Saparamadu U, Müller E, Ren Z (2017) Recent progress in p-type thermoelectric magnesium silicide based solid solutions. Mater Today Energy 4:105–121CrossRef
132.
Zurück zum Zitat de Boor J, Dasgupta T, Müller E (2016) Thermoelectric properties of magnesium silicide–based solid solutions and higher manganese silicides. In: Materials aspect of thermoelectricity. CRC Press, pp 173–232 de Boor J, Dasgupta T, Müller E (2016) Thermoelectric properties of magnesium silicide–based solid solutions and higher manganese silicides. In: Materials aspect of thermoelectricity. CRC Press, pp 173–232
133.
Zurück zum Zitat Zaitsev V (2006) Thermoelectrics on the base of solid solutions of Mg_2B^< IV> compounds (B^< IV>= Si, Ge, Sn). Thermoelectric handbook macro to nano Zaitsev V (2006) Thermoelectrics on the base of solid solutions of Mg_2B^< IV> compounds (B^< IV>= Si, Ge, Sn). Thermoelectric handbook macro to nano
134.
Zurück zum Zitat Nakamura S, Yoshihisa M, Ken’ichi T (2014) Mg2Si thermoelectric device fabrication with reused-silicon. In: JJAP conference proceedings 2014. The Japan Society of Applied Physics Nakamura S, Yoshihisa M, Ken’ichi T (2014) Mg2Si thermoelectric device fabrication with reused-silicon. In: JJAP conference proceedings 2014. The Japan Society of Applied Physics
135.
Zurück zum Zitat Li J, Li X, Chen C, Hu W, Yu F, Zhao Z, Zhang L, Yu D, Tian Y, Xu B (2018) Enhanced thermoelectric performance of bismuth-doped magnesium silicide synthesized under high pressure. J Mater Sci 53(12):9091–9098CrossRef Li J, Li X, Chen C, Hu W, Yu F, Zhao Z, Zhang L, Yu D, Tian Y, Xu B (2018) Enhanced thermoelectric performance of bismuth-doped magnesium silicide synthesized under high pressure. J Mater Sci 53(12):9091–9098CrossRef
136.
Zurück zum Zitat Tang X, Wang G, Zheng Y, Zhang Y, Peng K, Guo L, Wang S, Zeng M, Dai J, Wang G (2016) Ultra rapid fabrication of p-type Li-doped Mg2Si0.4Sn0.6 synthesized by unique melt spinning method. Scripta Materialia 115:52–56 Tang X, Wang G, Zheng Y, Zhang Y, Peng K, Guo L, Wang S, Zeng M, Dai J, Wang G (2016) Ultra rapid fabrication of p-type Li-doped Mg2Si0.4Sn0.6 synthesized by unique melt spinning method. Scripta Materialia 115:52–56
137.
Zurück zum Zitat Ihou-Mouko H, Mercier C, Tobola J, Pont G, Scherrer H (2011) Thermoelectric properties and electronic structure of p-type Mg2Si and Mg2Si0.6Ge0.4 compounds doped with Ga. J Alloys Compd 509(23):6503–6508 Ihou-Mouko H, Mercier C, Tobola J, Pont G, Scherrer H (2011) Thermoelectric properties and electronic structure of p-type Mg2Si and Mg2Si0.6Ge0.4 compounds doped with Ga. J Alloys Compd 509(23):6503–6508
138.
Zurück zum Zitat Tani J-I, Kido HJ (2007) Thermoelectric properties of p-doped Mg2Si semiconductors. J Appl Phys 46(6R):3309CrossRef Tani J-I, Kido HJ (2007) Thermoelectric properties of p-doped Mg2Si semiconductors. J Appl Phys 46(6R):3309CrossRef
139.
Zurück zum Zitat Tang X, Zhang Y, Zheng Y, Peng K, Huang T, Lu X, Wang G, Wang S, Zhou X (2017) Improving thermoelectric performance of p-type Ag-doped Mg2Si0.4Sn0.6 prepared by unique melt spinning method. Appl Therm Eng 111:1396–1400 Tang X, Zhang Y, Zheng Y, Peng K, Huang T, Lu X, Wang G, Wang S, Zhou X (2017) Improving thermoelectric performance of p-type Ag-doped Mg2Si0.4Sn0.6 prepared by unique melt spinning method. Appl Therm Eng 111:1396–1400
140.
Zurück zum Zitat Fiameni S, Famengo A, Agresti F, Boldrini S, Battiston S, Saleemi M, Johnsson M, Toprak M, Fabrizio M (2014) Effect of synthesis and sintering conditions on the thermoelectric properties of n-doped Mg2Si. J Electron Mater 43(6):2301–2306CrossRef Fiameni S, Famengo A, Agresti F, Boldrini S, Battiston S, Saleemi M, Johnsson M, Toprak M, Fabrizio M (2014) Effect of synthesis and sintering conditions on the thermoelectric properties of n-doped Mg2Si. J Electron Mater 43(6):2301–2306CrossRef
141.
Zurück zum Zitat Li J, Li X, Cai B, Chen C, Zhang Q, Zhao Z, Zhang L, Yu F, Yu D, Tian Y (2018) Enhanced thermoelectric performance of high pressure synthesized Sb-doped Mg2Si. J Alloy Compd 741:1148–1152CrossRef Li J, Li X, Cai B, Chen C, Zhang Q, Zhao Z, Zhang L, Yu F, Yu D, Tian Y (2018) Enhanced thermoelectric performance of high pressure synthesized Sb-doped Mg2Si. J Alloy Compd 741:1148–1152CrossRef
142.
Zurück zum Zitat Battiston S, Fiameni S, Saleemi M, Boldrini S, Famengo A, Agresti F, Stingaciu M, Toprak MS, Fabrizio M, Barison S (2013) Synthesis and characterization of Al-doped Mg2 i thermoelectric materials. J Electron Mater 42(7):1956–1959CrossRef Battiston S, Fiameni S, Saleemi M, Boldrini S, Famengo A, Agresti F, Stingaciu M, Toprak MS, Fabrizio M, Barison S (2013) Synthesis and characterization of Al-doped Mg2 i thermoelectric materials. J Electron Mater 42(7):1956–1959CrossRef
143.
Zurück zum Zitat Zhang X, Lu Q, Wang L, Zhang F, Zhang J (2010) Preparation of Mg2Si1−xSnx by induction melting and spark plasma sintering, and thermoelectric properties. J Electron Mater 39(9):1413–1417 Zhang X, Lu Q, Wang L, Zhang F, Zhang J (2010) Preparation of Mg2Si1−xSnx by induction melting and spark plasma sintering, and thermoelectric properties. J Electron Mater 39(9):1413–1417
144.
Zurück zum Zitat Zhang Q, Yin H, Zhao X, He J, Ji X, Zhu T, Tritt T (2008) Thermoelectric properties of n‐type Mg2Si0.6–ySbySn0.4 compounds. Physica Status Solidi 205(7):1657–1661 Zhang Q, Yin H, Zhao X, He J, Ji X, Zhu T, Tritt T (2008) Thermoelectric properties of n‐type Mg2Si0.6–ySbySn0.4 compounds. Physica Status Solidi 205(7):1657–1661
145.
Zurück zum Zitat Tani J-I, Kido H (2005) Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364(1–4):218–224CrossRef Tani J-I, Kido H (2005) Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364(1–4):218–224CrossRef
146.
Zurück zum Zitat Gao P, Berkun I, Schmidt RD, Luzenski MF, Lu X, Sarac PB, Case ED, Hogan TP (2014) Transport and mechanical properties of high-ZT Mg2.08Si0.4−xSn0.6Sbx thermoelectric materials. J Electron Mater 43(6):1790–1803 Gao P, Berkun I, Schmidt RD, Luzenski MF, Lu X, Sarac PB, Case ED, Hogan TP (2014) Transport and mechanical properties of high-ZT Mg2.08Si0.4−xSn0.6Sbx thermoelectric materials. J Electron Mater 43(6):1790–1803
147.
Zurück zum Zitat Zhang Q, Zheng Y, Su X, Yin K, Tang X, Uher C (2015) Enhanced power factor of Mg2Si0.3Sn0.7 synthesized by a non-equilibrium rapid solidification method. Scripta Materialia 96:1–4 Zhang Q, Zheng Y, Su X, Yin K, Tang X, Uher C (2015) Enhanced power factor of Mg2Si0.3Sn0.7 synthesized by a non-equilibrium rapid solidification method. Scripta Materialia 96:1–4
148.
Zurück zum Zitat Trivedi SB, Kutcher SW, Rosemeier CA, Mayers D, Singh J (2013) Magnesium and manganese silicides for efficient and low cost thermo-electric power generation. Brimrose Technology Corporation, Sparks Trivedi SB, Kutcher SW, Rosemeier CA, Mayers D, Singh J (2013) Magnesium and manganese silicides for efficient and low cost thermo-electric power generation. Brimrose Technology Corporation, Sparks
149.
Zurück zum Zitat Vivekanandhan P, Murugasami R, Kumar SA, Kumaran S (2020) Structural features and thermoelectric properties of spark plasma assisted combustion synthesised magnesium silicide doped with aluminium. Mater Chem Phys 241:122407 Vivekanandhan P, Murugasami R, Kumar SA, Kumaran S (2020) Structural features and thermoelectric properties of spark plasma assisted combustion synthesised magnesium silicide doped with aluminium. Mater Chem Phys 241:122407
150.
Zurück zum Zitat Yi T, Chen S, Li S, Yang H, Bux S, Bian Z, Katcho NA, Shakouri A, Mingo N, Fleurial J-P (2012) Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon, and their thermoelectric properties. J Mater Chem 22(47):24805–24813CrossRef Yi T, Chen S, Li S, Yang H, Bux S, Bian Z, Katcho NA, Shakouri A, Mingo N, Fleurial J-P (2012) Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon, and their thermoelectric properties. J Mater Chem 22(47):24805–24813CrossRef
151.
Zurück zum Zitat Castillo-Hernandez G, Yasseri M, Klobes B, Ayachi S, Müller E, de Boor J (2020) Room and high temperature mechanical properties of Mg2Si, Mg2Sn and their solid solutions. J Alloys Compd 845:156205 Castillo-Hernandez G, Yasseri M, Klobes B, Ayachi S, Müller E, de Boor J (2020) Room and high temperature mechanical properties of Mg2Si, Mg2Sn and their solid solutions. J Alloys Compd 845:156205
152.
Zurück zum Zitat Padmavathi C, Upadhyaya A, Agrawal D (2011) Effect of microwave and conventional heating on sintering behavior and properties of Al–Mg–Si–Cu alloy. Mater Chem Phys 130(1–2):449–457CrossRef Padmavathi C, Upadhyaya A, Agrawal D (2011) Effect of microwave and conventional heating on sintering behavior and properties of Al–Mg–Si–Cu alloy. Mater Chem Phys 130(1–2):449–457CrossRef
153.
Zurück zum Zitat Gao H, Zhu T, Liu X, Chen L, Zhao X (2011) Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. J Mater Chem 21(16):5933–5937 Gao H, Zhu T, Liu X, Chen L, Zhao X (2011) Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. J Mater Chem 21(16):5933–5937
154.
Zurück zum Zitat Souda D, Shimizu K, Ohishi Y, Muta H, Yagi T, Kurosaki K (2020) High thermoelectric power factor of Si–Mg2Si nanocomposite ribbons synthesized by melt spinning. ACS Applied Energy Mater 3(2):1962–1968CrossRef Souda D, Shimizu K, Ohishi Y, Muta H, Yagi T, Kurosaki K (2020) High thermoelectric power factor of Si–Mg2Si nanocomposite ribbons synthesized by melt spinning. ACS Applied Energy Mater 3(2):1962–1968CrossRef
155.
Zurück zum Zitat Sekino K, Midonoya M, Udono H, Yamada Y (2011) Preparation of Schottky contacts on n-type Mg2Si single crystalline substrate. Phys Procedia 11:171–173CrossRef Sekino K, Midonoya M, Udono H, Yamada Y (2011) Preparation of Schottky contacts on n-type Mg2Si single crystalline substrate. Phys Procedia 11:171–173CrossRef
156.
Zurück zum Zitat Nieroda P, Mars K, Nieroda J, Leszczyński J, Król M, Drożdż E, Jeleń P, Sitarz M, Koleżyński A (2019) New high temperature amorphous protective coatings for Mg2Si thermoelectric material. Ceram Int 45(8):10230–10235CrossRef Nieroda P, Mars K, Nieroda J, Leszczyński J, Król M, Drożdż E, Jeleń P, Sitarz M, Koleżyński A (2019) New high temperature amorphous protective coatings for Mg2Si thermoelectric material. Ceram Int 45(8):10230–10235CrossRef
157.
Zurück zum Zitat Cahana M, Gelbstein Y (2020) Bismuth doping of induction furnace synthesized Mg2Si, Mg2Sn and Mg2Ge thermoelectric compounds. Intermetallics 120:106767 Cahana M, Gelbstein Y (2020) Bismuth doping of induction furnace synthesized Mg2Si, Mg2Sn and Mg2Ge thermoelectric compounds. Intermetallics 120:106767
158.
Zurück zum Zitat Zhou Z, Chai YW, Ikuta Y, Lee Y, Lin Y, Kimura Y (2020) Reduced thermal conductivity of Mg2 (Si, Sn) solid solutions by a gradient composition layered microstructure. ACS Appl Mater Interfaces 12(17):19547–19552CrossRef Zhou Z, Chai YW, Ikuta Y, Lee Y, Lin Y, Kimura Y (2020) Reduced thermal conductivity of Mg2 (Si, Sn) solid solutions by a gradient composition layered microstructure. ACS Appl Mater Interfaces 12(17):19547–19552CrossRef
159.
Zurück zum Zitat Kim G, Kim W, Lee W (2020) Intercorrelated relationship between the thermoelectric performance and mechanical reliability of Mg2Si-reduced graphene oxide nanocomposites. Electron Mater Lett 16(2):174–179CrossRef Kim G, Kim W, Lee W (2020) Intercorrelated relationship between the thermoelectric performance and mechanical reliability of Mg2Si-reduced graphene oxide nanocomposites. Electron Mater Lett 16(2):174–179CrossRef
160.
Zurück zum Zitat Mesaritis G, Symeou E, Delimitis A, Constantinou M, Constantinides G, Jeagle M, Tarantik K, Kyratsi T (2020) Synthesis, characterization and thermoelectric performance of Mg2 (Si, Sn, Ge) materials using Si-kerf waste from photovoltaic technology. J Alloys Compd 826:153933 Mesaritis G, Symeou E, Delimitis A, Constantinou M, Constantinides G, Jeagle M, Tarantik K, Kyratsi T (2020) Synthesis, characterization and thermoelectric performance of Mg2 (Si, Sn, Ge) materials using Si-kerf waste from photovoltaic technology. J Alloys Compd 826:153933
161.
Zurück zum Zitat Fedorov MI, Isachenko GNJ (2015) Silicides: materials for thermoelectric energy conversion. J Appl Phys 54(7S2):07JA05 Fedorov MI, Isachenko GNJ (2015) Silicides: materials for thermoelectric energy conversion. J Appl Phys 54(7S2):07JA05
162.
Zurück zum Zitat Levinson LM (1973) Investigation of the defect manganese silicide MnnSi2n−m. J Solid State Chem 6(1):126–135CrossRef Levinson LM (1973) Investigation of the defect manganese silicide MnnSi2n−m. J Solid State Chem 6(1):126–135CrossRef
163.
Zurück zum Zitat Liu WD, Chen ZG, Zou J (2018) Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges. Adv Energy Mater 8(19):1800056CrossRef Liu WD, Chen ZG, Zou J (2018) Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges. Adv Energy Mater 8(19):1800056CrossRef
164.
Zurück zum Zitat Ghodke S, Hiroishi N, Yamamoto A, Ikuta H, Matsunami M, Takeuchi T (2016) Enhanced thermoelectric properties of W-and Fe-substituted MnSi γ. J Electron Mater 45(10):5279–5284CrossRef Ghodke S, Hiroishi N, Yamamoto A, Ikuta H, Matsunami M, Takeuchi T (2016) Enhanced thermoelectric properties of W-and Fe-substituted MnSi γ. J Electron Mater 45(10):5279–5284CrossRef
165.
Zurück zum Zitat Ghodke S, Yamamoto A, Hu H-C, Nishino S, Matsunaga T, Byeon D, Ikuta H, Takeuchi T (2019) Improved thermoelectric properties of re-substituted higher manganese silicides by inducing phonon scattering and an energy-filtering effect at grain boundary interfaces. ACS Appl Mater Interfaces 11(34):31169–31175CrossRef Ghodke S, Yamamoto A, Hu H-C, Nishino S, Matsunaga T, Byeon D, Ikuta H, Takeuchi T (2019) Improved thermoelectric properties of re-substituted higher manganese silicides by inducing phonon scattering and an energy-filtering effect at grain boundary interfaces. ACS Appl Mater Interfaces 11(34):31169–31175CrossRef
166.
Zurück zum Zitat Palaporn D, Parse N, Tanusilp S, Silpawilawan W, Kurosaki K, Pinitsoontorn S (2020) Synthesis of silicon and higher manganese silicide bulk nano-composites and their thermoelectric properties. J Electron Mater 1–8 Palaporn D, Parse N, Tanusilp S, Silpawilawan W, Kurosaki K, Pinitsoontorn S (2020) Synthesis of silicon and higher manganese silicide bulk nano-composites and their thermoelectric properties. J Electron Mater 1–8
167.
Zurück zum Zitat Aoyama I, Fedorov MI, Zaitsev VK, Solomkin FY, Eremin IS, Samunin AY, Mukoujima M, Sano S, Tsuji TJ (2005) Effects of Ge doping on micromorphology of MnSi in MnSi ∼ 1.7 and on their thermoelectric transport properties. J Appl Phys 44(12R):8562 Aoyama I, Fedorov MI, Zaitsev VK, Solomkin FY, Eremin IS, Samunin AY, Mukoujima M, Sano S, Tsuji TJ (2005) Effects of Ge doping on micromorphology of MnSi in MnSi ∼ 1.7 and on their thermoelectric transport properties. J Appl Phys 44(12R):8562
168.
Zurück zum Zitat Girard SN, Chen X, Meng F, Pokhrel A, Zhou J, Shi L, Jin S (2014) Thermoelectric properties of undoped high purity higher manganese silicides grown by chemical vapor transport. Chem Mater 26(17):5097–5104CrossRef Girard SN, Chen X, Meng F, Pokhrel A, Zhou J, Shi L, Jin S (2014) Thermoelectric properties of undoped high purity higher manganese silicides grown by chemical vapor transport. Chem Mater 26(17):5097–5104CrossRef
169.
Zurück zum Zitat Teknetzi A, Tarani E, Symeou E, Karfaridis D, Stathokostopoulos D, Pavlidou E, Kyratsi T, Hatzikraniotis E, Chrissafis K, Vourlias G (2021) Structure and thermoelectric properties of higher manganese silicides synthesized by pack cementation. Ceram Int 47(1):243–251CrossRef Teknetzi A, Tarani E, Symeou E, Karfaridis D, Stathokostopoulos D, Pavlidou E, Kyratsi T, Hatzikraniotis E, Chrissafis K, Vourlias G (2021) Structure and thermoelectric properties of higher manganese silicides synthesized by pack cementation. Ceram Int 47(1):243–251CrossRef
170.
Zurück zum Zitat Pichon P-Y, Berneron P, Levinsky J, Burema A, Blake G, Berthebaud D, Gascoin S, Gascoin F, Hebert S, Amtsfeld J (2020) Stability and thermoelectric performance of doped higher manganese silicide materials solidified by RGS (ribbon growth on substrate) synthesis. J Alloys Compd 832:154602 Pichon P-Y, Berneron P, Levinsky J, Burema A, Blake G, Berthebaud D, Gascoin S, Gascoin F, Hebert S, Amtsfeld J (2020) Stability and thermoelectric performance of doped higher manganese silicide materials solidified by RGS (ribbon growth on substrate) synthesis. J Alloys Compd 832:154602
171.
Zurück zum Zitat Liu L, Oda H, Onda T, Yodoshi N, Wada T, Chen Z-C (2020) Microstructure and thermoelectric properties of higher manganese silicides fabricated via gas atomization and spark plasma sintering. Mater Chem Phys 249:122990 Liu L, Oda H, Onda T, Yodoshi N, Wada T, Chen Z-C (2020) Microstructure and thermoelectric properties of higher manganese silicides fabricated via gas atomization and spark plasma sintering. Mater Chem Phys 249:122990
172.
Zurück zum Zitat Sadia Y, Dinnerman L, Gelbstein Y (2013) Mechanical alloying and spark plasma sintering of higher manganese silicides for thermoelectric applications. J Electron Mater 42(7):1926–1931CrossRef Sadia Y, Dinnerman L, Gelbstein Y (2013) Mechanical alloying and spark plasma sintering of higher manganese silicides for thermoelectric applications. J Electron Mater 42(7):1926–1931CrossRef
173.
Zurück zum Zitat Truong DN, Kleinke H, Gascoin F (2015) Preparation of pure higher manganese silicides through wet ball milling and reactive sintering with enhanced thermoelectric properties. Intermetallics 66:127–132CrossRef Truong DN, Kleinke H, Gascoin F (2015) Preparation of pure higher manganese silicides through wet ball milling and reactive sintering with enhanced thermoelectric properties. Intermetallics 66:127–132CrossRef
174.
Zurück zum Zitat Shin D-K, You S-W, Kim I-H (2014) Solid-state synthesis and thermoelectric properties of Cr-doped MnSi1.73. J Korean Phys Soc 65(10):1499–1502 Shin D-K, You S-W, Kim I-H (2014) Solid-state synthesis and thermoelectric properties of Cr-doped MnSi1.73. J Korean Phys Soc 65(10):1499–1502
175.
Zurück zum Zitat Sadia Y, Madar N, Kaler I, Gelbstein Y (2015) Thermoelectric properties of the quasi-binary MnSi1.73–FeSi2 system. J Electron Mater 44(6):1637–1643 Sadia Y, Madar N, Kaler I, Gelbstein Y (2015) Thermoelectric properties of the quasi-binary MnSi1.73–FeSi2 system. J Electron Mater 44(6):1637–1643
176.
Zurück zum Zitat Itoh T, Uebayashi S (2016) Cobalt and iron doping effects on thermoelectric properties of higher manganese silicides prepared by mechanical milling and pulse discharge sintering. J Jpn Soc Powder Powder Metall 63(7):491–496CrossRef Itoh T, Uebayashi S (2016) Cobalt and iron doping effects on thermoelectric properties of higher manganese silicides prepared by mechanical milling and pulse discharge sintering. J Jpn Soc Powder Powder Metall 63(7):491–496CrossRef
177.
Zurück zum Zitat Yamamoto A, Ghodke S, Miyazaki H, Inukai M, Nishino Y, Matsunami M, Takeuchi TJ (2016) Thermoelectric properties of supersaturated Re solid solution of higher manganese silicides. J Appl Phys 55(2):020301 Yamamoto A, Ghodke S, Miyazaki H, Inukai M, Nishino Y, Matsunami M, Takeuchi TJ (2016) Thermoelectric properties of supersaturated Re solid solution of higher manganese silicides. J Appl Phys 55(2):020301
178.
Zurück zum Zitat Battiston S, Boldrini S, Saleemi M, Famengo A, Fiameni S, Toprak M, Fabrizio M (2017) Nanotechnology: Influence of Al and Mg addition on thermoelectric properties of higher manganese silicides obtained by reactive sintering. J Nanotechnol 17(3):1668–1673 Battiston S, Boldrini S, Saleemi M, Famengo A, Fiameni S, Toprak M, Fabrizio M (2017) Nanotechnology: Influence of Al and Mg addition on thermoelectric properties of higher manganese silicides obtained by reactive sintering. J Nanotechnol 17(3):1668–1673
179.
Zurück zum Zitat Norouzzadeh P, Zamanipour Z, Krasinski JS, Vashaee D (2012) The effect of nanostructuring on thermoelectric transport properties of p-type higher manganese silicide MnSi1.73. J Appl Phys 112(12):124308 Norouzzadeh P, Zamanipour Z, Krasinski JS, Vashaee D (2012) The effect of nanostructuring on thermoelectric transport properties of p-type higher manganese silicide MnSi1.73. J Appl Phys 112(12):124308
180.
Zurück zum Zitat Rao SP, Saw AK, Chotia C, Okram G, Dayal V (2021) Structural and thermoelectric properties of Mn15Si26, Mn4Si7 and MnSi2, synthesized using arc-melting method. Appl Phys A 127(8):1–6CrossRef Rao SP, Saw AK, Chotia C, Okram G, Dayal V (2021) Structural and thermoelectric properties of Mn15Si26, Mn4Si7 and MnSi2, synthesized using arc-melting method. Appl Phys A 127(8):1–6CrossRef
181.
Zurück zum Zitat Di L, Sun R, Qin X (2011) Improving thermoelectric properties of p-type Bi2Te3-based alloys by spark plasma sintering. Prog Nat Sci: Mater Int 21(4):336–340 Di L, Sun R, Qin X (2011) Improving thermoelectric properties of p-type Bi2Te3-based alloys by spark plasma sintering. Prog Nat Sci: Mater Int 21(4):336–340
182.
Zurück zum Zitat Zhang G, Kirk B, Jauregui LA, Yang H, Xu X, Chen YP, Wu Y (2012) Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett 12(1):56–60CrossRef Zhang G, Kirk B, Jauregui LA, Yang H, Xu X, Chen YP, Wu Y (2012) Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett 12(1):56–60CrossRef
183.
Zurück zum Zitat Lv H, Liu H, Shi J, Tang X, Uher C (2013) Optimized thermoelectric performance of Bi2Te3 nanowires. J Mater Chem A 1(23):6831–6838CrossRef Lv H, Liu H, Shi J, Tang X, Uher C (2013) Optimized thermoelectric performance of Bi2Te3 nanowires. J Mater Chem A 1(23):6831–6838CrossRef
184.
Zurück zum Zitat Wu D, Zhao L-D, Hao S, Jiang Q, Zheng F, Doak JW, Wu H, Chi H, Gelbstein Y, Uher C (2014) Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J Am Chem Soc 136(32):11412–11419CrossRef Wu D, Zhao L-D, Hao S, Jiang Q, Zheng F, Doak JW, Wu H, Chi H, Gelbstein Y, Uher C (2014) Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J Am Chem Soc 136(32):11412–11419CrossRef
185.
Zurück zum Zitat Lee KH, Kim SI, Mun H, Ryu B, Choi S-M, Park HJ, Hwang S, Kim SW (2015) Enhanced thermoelectric performance of n-type Cu0.008Bi2Te2.7Se0.3 by band engineering. J Mater Chem C 3(40):10604–10609 Lee KH, Kim SI, Mun H, Ryu B, Choi S-M, Park HJ, Hwang S, Kim SW (2015) Enhanced thermoelectric performance of n-type Cu0.008Bi2Te2.7Se0.3 by band engineering. J Mater Chem C 3(40):10604–10609
186.
Zurück zum Zitat Madar N, Givon T, Mogilyansky D, Gelbstein Y (2016) High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. J Appl Phys 120(3):035102 Madar N, Givon T, Mogilyansky D, Gelbstein Y (2016) High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. J Appl Phys 120(3):035102
187.
Zurück zum Zitat Serrano-Sánchez F, Gharsallah M, Nemes N, Biskup N, Varela M, Martínez J, Fernández-Díaz M, Alonso J (2017) Enhanced figure of merit in nanostructured (Bi,Sb)2Te3 with optimized composition, prepared by a straightforward arc-melting procedure. Sci Rep 7(1):1–10CrossRef Serrano-Sánchez F, Gharsallah M, Nemes N, Biskup N, Varela M, Martínez J, Fernández-Díaz M, Alonso J (2017) Enhanced figure of merit in nanostructured (Bi,Sb)2Te3 with optimized composition, prepared by a straightforward arc-melting procedure. Sci Rep 7(1):1–10CrossRef
188.
Zurück zum Zitat Liu Y, Zhang Y, Lim KH, Ibáñez M, Ortega S, Li M, David J, Martí-Sánchez S, Ng KM, Arbiol J (2018) high thermoelectric performance in crystallographically textured n-type Bi2Te3–xSex produced from asymmetric colloidal nanocrystals. ACS Nano 12(7):7174–7184CrossRef Liu Y, Zhang Y, Lim KH, Ibáñez M, Ortega S, Li M, David J, Martí-Sánchez S, Ng KM, Arbiol J (2018) high thermoelectric performance in crystallographically textured n-type Bi2Te3–xSex produced from asymmetric colloidal nanocrystals. ACS Nano 12(7):7174–7184CrossRef
189.
Zurück zum Zitat Wu D, Xie L, Xu X, He J (2019) High thermoelectric performance achieved in GeTe–Bi2Te3 pseudo-binary via van der waals gap-induced hierarchical ferroelectric domain structure. Adv Func Mater 29(18):1806613CrossRef Wu D, Xie L, Xu X, He J (2019) High thermoelectric performance achieved in GeTe–Bi2Te3 pseudo-binary via van der waals gap-induced hierarchical ferroelectric domain structure. Adv Func Mater 29(18):1806613CrossRef
190.
Zurück zum Zitat Al Rahal Al Orabi R, Mecholsky NA, Hwang J, Kim W, Rhyee J-S, Wee D, Fornari M (2016) Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe–CaTe alloys. Chem Mater 28(1):376–384 Al Rahal Al Orabi R, Mecholsky NA, Hwang J, Kim W, Rhyee J-S, Wee D, Fornari M (2016) Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe–CaTe alloys. Chem Mater 28(1):376–384
191.
Zurück zum Zitat Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare UV, Biswas K (2019) Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1–xGexTe. Energy Environ Sci 12(2):589–595CrossRef Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare UV, Biswas K (2019) Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1–xGexTe. Energy Environ Sci 12(2):589–595CrossRef
192.
Zurück zum Zitat Guo F, Cui B, Li C, Wang Y, Cao J, Zhang X, Ren Z, Cai W, Sui J (2021) Ultrahigh thermoelectric performance in environmentally friendly SnTe achieved through stress‐induced lotus‐seedpod‐like grain boundaries. Adv Funct Mater Guo F, Cui B, Li C, Wang Y, Cao J, Zhang X, Ren Z, Cai W, Sui J (2021) Ultrahigh thermoelectric performance in environmentally friendly SnTe achieved through stress‐induced lotus‐seedpod‐like grain boundaries. Adv Funct Mater
193.
Zurück zum Zitat Hussain T, Li X, Danish MH, Rehman MU, Zhang J, Li D, Chen G, Tang G (2020) Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy 73:104832 Hussain T, Li X, Danish MH, Rehman MU, Zhang J, Li D, Chen G, Tang G (2020) Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy 73:104832
194.
Zurück zum Zitat Shenoy S, Bhat DK (2017) Enhanced bulk thermoelectric performance of Pb0.6Sn0.4Te: effect of magnesium doping. J Phys Chem C 121(38):20696–20703 Shenoy S, Bhat DK (2017) Enhanced bulk thermoelectric performance of Pb0.6Sn0.4Te: effect of magnesium doping. J Phys Chem C 121(38):20696–20703
195.
Zurück zum Zitat Tan G, Shi F, Sun H, Zhao L-D, Uher C, Dravid VP, Kanatzidis MG (2014) SnTe–AgBiTe2 as an efficient thermoelectric material with low thermal conductivity. J Mater Chem A 2(48):20849–20854CrossRef Tan G, Shi F, Sun H, Zhao L-D, Uher C, Dravid VP, Kanatzidis MG (2014) SnTe–AgBiTe2 as an efficient thermoelectric material with low thermal conductivity. J Mater Chem A 2(48):20849–20854CrossRef
196.
Zurück zum Zitat Tan G, Shi F, Doak JW, Sun H, Zhao L-D, Wang P, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2015) Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ Sci 8(1):267–277CrossRef Tan G, Shi F, Doak JW, Sun H, Zhao L-D, Wang P, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2015) Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ Sci 8(1):267–277CrossRef
197.
Zurück zum Zitat Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z (2013) High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci 110(33):13261–13266CrossRef Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z (2013) High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci 110(33):13261–13266CrossRef
198.
Zurück zum Zitat Girard SN, He J, Zhou X, Shoemaker D, Jaworski CM, Uher C, Dravid VP, Heremans JP, Kanatzidis MG (2011) High performance Na-doped PbTe–PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J Am Chem Soc 133(41):16588–16597CrossRef Girard SN, He J, Zhou X, Shoemaker D, Jaworski CM, Uher C, Dravid VP, Heremans JP, Kanatzidis MG (2011) High performance Na-doped PbTe–PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J Am Chem Soc 133(41):16588–16597CrossRef
199.
Zurück zum Zitat Zhao L-D, Wu H, Hao S, Wu C-I, Zhou X, Biswas K, He J, Hogan TP, Uher C, Wolverton C (2013) All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ Sci 6(11):3346–3355CrossRef Zhao L-D, Wu H, Hao S, Wu C-I, Zhou X, Biswas K, He J, Hogan TP, Uher C, Wolverton C (2013) All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ Sci 6(11):3346–3355CrossRef
200.
Zurück zum Zitat Luo J, You L, Zhang J, Guo K, Zhu H, Gu L, Yang Z, Li X, Yang J, Zhang W (2017) Enhanced average thermoelectric figure of merit of the PbTe–SrTe–MnTe alloy. ACS Appl Mater Interfaces 9(10):8729–8736CrossRef Luo J, You L, Zhang J, Guo K, Zhu H, Gu L, Yang Z, Li X, Yang J, Zhang W (2017) Enhanced average thermoelectric figure of merit of the PbTe–SrTe–MnTe alloy. ACS Appl Mater Interfaces 9(10):8729–8736CrossRef
201.
Zurück zum Zitat Jood P, Male JP, Anand S, Matsushita Y, Takagiwa Y, Kanatzidis MG, Snyder GJ, Ohta M (2020) Na doping in PbTe: solubility, band convergence, phase boundary mapping, and thermoelectric properties. J Am Chem Soc 142(36):15464–15475CrossRef Jood P, Male JP, Anand S, Matsushita Y, Takagiwa Y, Kanatzidis MG, Snyder GJ, Ohta M (2020) Na doping in PbTe: solubility, band convergence, phase boundary mapping, and thermoelectric properties. J Am Chem Soc 142(36):15464–15475CrossRef
202.
Zurück zum Zitat Cai B, Zhuang H-L, Tang H, Li J-F (2020) Polycrystalline SnSe–Sn1–vS solid solutions: vacancy engineering and nanostructuring leading to high thermoelectric performance. Nano Energy 69:104393 Cai B, Zhuang H-L, Tang H, Li J-F (2020) Polycrystalline SnSe–Sn1–vS solid solutions: vacancy engineering and nanostructuring leading to high thermoelectric performance. Nano Energy 69:104393
203.
Zurück zum Zitat Guo H, Xin H, Qin X, Zhang J, Li D, Li Y, Song C, Li C (2016) Enhanced thermoelectric performance of highly oriented polycrystalline SnSe based composites incorporated with SnTe nanoinclusions. J Alloy Compd 689:87–93CrossRef Guo H, Xin H, Qin X, Zhang J, Li D, Li Y, Song C, Li C (2016) Enhanced thermoelectric performance of highly oriented polycrystalline SnSe based composites incorporated with SnTe nanoinclusions. J Alloy Compd 689:87–93CrossRef
204.
Zurück zum Zitat Lee YK, Luo Z, Cho SP, Kanatzidis MG, Chung I (2019) Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 3(3):719–731CrossRef Lee YK, Luo Z, Cho SP, Kanatzidis MG, Chung I (2019) Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 3(3):719–731CrossRef
205.
Zurück zum Zitat Lin C-C, Lydia R, Yun JH, Lee HS, Rhyee JS (2017) Extremely low lattice thermal conductivity and point defect scattering of phonons in Ag-doped (SnSe)1–x(SnS)x compounds. Chem Mater 29(12):5344–5352CrossRef Lin C-C, Lydia R, Yun JH, Lee HS, Rhyee JS (2017) Extremely low lattice thermal conductivity and point defect scattering of phonons in Ag-doped (SnSe)1–x(SnS)x compounds. Chem Mater 29(12):5344–5352CrossRef
206.
Zurück zum Zitat Liu J, Wang P, Wang M, Xu R, Zhang J, Liu J, Li D, Liang N, Du Y, Chen G (2018) Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies. Nano Energy 53:683–689CrossRef Liu J, Wang P, Wang M, Xu R, Zhang J, Liu J, Li D, Liang N, Du Y, Chen G (2018) Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies. Nano Energy 53:683–689CrossRef
207.
Zurück zum Zitat Zhou C, Lee YK, Yu Y, Byun S, Luo Z-Z, Lee H, Ge B, Lee Y-L, Chen X, Lee JY (2021) Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat Mater 1–7 Zhou C, Lee YK, Yu Y, Byun S, Luo Z-Z, Lee H, Ge B, Lee Y-L, Chen X, Lee JY (2021) Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat Mater 1–7
208.
Zurück zum Zitat Liu W, Tang X, Li H, Sharp J, Zhou X, Uher C (2011) Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0. 5–ySn0. 5Sby through adjustment of the Mg content. Chem Mater 23(23):5256–5263 Liu W, Tang X, Li H, Sharp J, Zhou X, Uher C (2011) Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0. 5–ySn0. 5Sby through adjustment of the Mg content. Chem Mater 23(23):5256–5263
209.
Zurück zum Zitat Berthebaud D, Gascoin F (2013) Microwaved assisted fast synthesis of n and p-doped Mg2Si. J Solid State Chem 202:61–64CrossRef Berthebaud D, Gascoin F (2013) Microwaved assisted fast synthesis of n and p-doped Mg2Si. J Solid State Chem 202:61–64CrossRef
210.
Zurück zum Zitat Søndergaard M, Christensen M, Borup K, Yin H, Iversen B (2013) Thermoelectric properties of the entire composition range in Mg2Si0.9925−xSnxSb0.0075. J Electron Mater 42(7):1417–1421 Søndergaard M, Christensen M, Borup K, Yin H, Iversen B (2013) Thermoelectric properties of the entire composition range in Mg2Si0.9925−xSnxSb0.0075. J Electron Mater 42(7):1417–1421
211.
Zurück zum Zitat Yin K, Su X, Yan Y, You Y, Zhang Q, Uher C, Kanatzidis MG, Tang X (2016) Optimization of the electronic band structure and the lattice thermal conductivity of solid solutions according to simple calculations: a canonical example of the Mg2Si1–x–yGexSny ternary solid solution. Chem Mater 28(15):5538–5548CrossRef Yin K, Su X, Yan Y, You Y, Zhang Q, Uher C, Kanatzidis MG, Tang X (2016) Optimization of the electronic band structure and the lattice thermal conductivity of solid solutions according to simple calculations: a canonical example of the Mg2Si1–x–yGexSny ternary solid solution. Chem Mater 28(15):5538–5548CrossRef
212.
Zurück zum Zitat Nieroda P, Leszczynski J, Kolezynski A (2017) Bismuth doped Mg2Si with improved homogeneity: synthesis, characterization and optimization of thermoelectric properties. J Phys Chem Solids 103:147–159CrossRef Nieroda P, Leszczynski J, Kolezynski A (2017) Bismuth doped Mg2Si with improved homogeneity: synthesis, characterization and optimization of thermoelectric properties. J Phys Chem Solids 103:147–159CrossRef
213.
Zurück zum Zitat Farahi N, Stiewe C, Truong DN, de Boor J, Müller E (2019) High efficiency Mg2(Si,Sn)-based thermoelectric materials: scale-up synthesis, functional homogeneity, and thermal stability. RSC Adv 9(40):23021–23028CrossRef Farahi N, Stiewe C, Truong DN, de Boor J, Müller E (2019) High efficiency Mg2(Si,Sn)-based thermoelectric materials: scale-up synthesis, functional homogeneity, and thermal stability. RSC Adv 9(40):23021–23028CrossRef
214.
Zurück zum Zitat Luo W, Li H, Fu F, Hao W, Tang X (2011) Improved thermoelectric properties of Al-doped higher manganese silicide prepared by a rapid solidification method. J Electron Mater 40(5):1233–1237CrossRef Luo W, Li H, Fu F, Hao W, Tang X (2011) Improved thermoelectric properties of Al-doped higher manganese silicide prepared by a rapid solidification method. J Electron Mater 40(5):1233–1237CrossRef
215.
Zurück zum Zitat Sadia Y, Gelbstein Y (2012) Silicon-rich higher manganese silicides for thermoelectric applications. J Electron Mater 41(6):1504–1508CrossRef Sadia Y, Gelbstein Y (2012) Silicon-rich higher manganese silicides for thermoelectric applications. J Electron Mater 41(6):1504–1508CrossRef
216.
Zurück zum Zitat Chen X, Girard SN, Meng F, Lara-Curzio E, Jin S, Goodenough JB, Zhou J, Shi L (2014) Approaching the minimum thermal conductivity in rhenium-substituted higher manganese silicides. Adv Energy Mater 4(14):1400452CrossRef Chen X, Girard SN, Meng F, Lara-Curzio E, Jin S, Goodenough JB, Zhou J, Shi L (2014) Approaching the minimum thermal conductivity in rhenium-substituted higher manganese silicides. Adv Energy Mater 4(14):1400452CrossRef
217.
Zurück zum Zitat Chen X, Zhou J, Goodenough JB, Shi L (2015) Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase. J Mater Chem C 3(40):10500–10508CrossRef Chen X, Zhou J, Goodenough JB, Shi L (2015) Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase. J Mater Chem C 3(40):10500–10508CrossRef
218.
Zurück zum Zitat Muthiah S, Singh R, Pathak B, Avasthi PK, Kumar R, Kumar A, Srivastava A, Dhar A (2018) Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique. Nanoscale 10(4):1970–1977CrossRef Muthiah S, Singh R, Pathak B, Avasthi PK, Kumar R, Kumar A, Srivastava A, Dhar A (2018) Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique. Nanoscale 10(4):1970–1977CrossRef
219.
Zurück zum Zitat Li Z, Dong JF, Sun FH, Pan Y, Wang SF, Wang Q, Zhang D, Zhao L, Li J (2018) MnS incorporation into higher manganese silicide yields a green thermoelectric composite with high performance/price ratio. Adv Sci 5(9):1800626CrossRef Li Z, Dong JF, Sun FH, Pan Y, Wang SF, Wang Q, Zhang D, Zhao L, Li J (2018) MnS incorporation into higher manganese silicide yields a green thermoelectric composite with high performance/price ratio. Adv Sci 5(9):1800626CrossRef
220.
Zurück zum Zitat Zhao D, Tan G (2014) A review of thermoelectric cooling: materials, modeling and applications. Appl Therm Eng 66(1–2):15–24CrossRef Zhao D, Tan G (2014) A review of thermoelectric cooling: materials, modeling and applications. Appl Therm Eng 66(1–2):15–24CrossRef
221.
Zurück zum Zitat Aridi R, Faraj J, Ali S, Lemenand T, Khaled M (2021) Thermoelectric power generators: state-of-the-art, heat recovery method, and challenges. Electricity 2(3):359–386CrossRef Aridi R, Faraj J, Ali S, Lemenand T, Khaled M (2021) Thermoelectric power generators: state-of-the-art, heat recovery method, and challenges. Electricity 2(3):359–386CrossRef
222.
Zurück zum Zitat Cai B, Hu H, Zhuang H-L, Li J-F (2019) Compounds: promising materials for thermoelectric applications. J Alloy Compd 806:471–486CrossRef Cai B, Hu H, Zhuang H-L, Li J-F (2019) Compounds: promising materials for thermoelectric applications. J Alloy Compd 806:471–486CrossRef
223.
Zurück zum Zitat Tritt TM, Subramanian M (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31(3):188–198CrossRef Tritt TM, Subramanian M (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31(3):188–198CrossRef
224.
Zurück zum Zitat Butt FK, Haq BU, ur Rehman S, Ahmed R, Cao C, AlFaifi S (2017) Compounds: investigation of thermoelectric properties of novel cubic phase SnSe: a promising material for thermoelectric applications. J Alloys Compd 715:438–444 Butt FK, Haq BU, ur Rehman S, Ahmed R, Cao C, AlFaifi S (2017) Compounds: investigation of thermoelectric properties of novel cubic phase SnSe: a promising material for thermoelectric applications. J Alloys Compd 715:438–444
225.
Zurück zum Zitat Sanad MF, Shalan AE, Abdellatif SO, Serea ESA, Adly MS, Ahsan MA (2020) Thermoelectric energy harvesters: a review of recent developments in materials and devices for different potential applications. Top Curr Chem 378(6):1–43 Sanad MF, Shalan AE, Abdellatif SO, Serea ESA, Adly MS, Ahsan MA (2020) Thermoelectric energy harvesters: a review of recent developments in materials and devices for different potential applications. Top Curr Chem 378(6):1–43
Metadaten
Titel
Major Challenges Toward the Development of Efficient Thermoelectric Materials: From High Figure-of-Merit (zT) Materials to Devices
verfasst von
S. Neeleshwar
Anjali Saini
Mukesh Kumar Bairwa
Neeta Bisht
Ankita Katre
G. Narsinga Rao
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-0553-7_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.