Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Management of Heavy Metal Polluted Soils: Perspective of Arbuscular Mycorrhizal Fungi

verfasst von : R. Krishnamoorthy, V. Venkatramanan, M. Senthilkumar, R. Anandham, K. Kumutha, Tongmin Sa

Erschienen in: Sustainable Green Technologies for Environmental Management

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, intensive research have been initiated on remediation of metal polluted soil due to the public concerns on ecosystem deterioration. Plants are used as an effective tool in remediation of metal polluted soil. In natural ecosystem, plants are associated with soil microorganisms which plays an important role in enhancing plant growth in metal contaminated site and phytoremediation process. Among the microorganisms, arbuscular mycorrhizal fungi (AMF) contributes markedly in the phytoremediation process in metal contaminated site by enhancing plant stress tolerance and metal extraction from soil (phytoextraction) and immobilization of metals in soil (phytostabilization). This chapter deals with our study on the effect of heavy metal on AMF root colonization and diversity in heavy metal and metalloid contaminated sites. In addition, this chapter summarizes the mechanisms involved in AMF mediated phytoremediation of metal polluted soil. Potential prospects lies in revealing the mechanisms behind the tripartite interaction among plant species, AMF species and heavy metals for effective management of polluted soils.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allen, M. F., Swenson, W., Querejeta, J. I., Egerton-Warburton, L. M., & Treseder, K. K. (2003). Ecology of mycorrhizae: A conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology, 41, 271–303.CrossRef Allen, M. F., Swenson, W., Querejeta, J. I., Egerton-Warburton, L. M., & Treseder, K. K. (2003). Ecology of mycorrhizae: A conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology, 41, 271–303.CrossRef
Zurück zum Zitat Audet, P., & Charest, C. (2007). Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environmental Pollution, 147, 609–614.CrossRef Audet, P., & Charest, C. (2007). Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environmental Pollution, 147, 609–614.CrossRef
Zurück zum Zitat Barceló, J., & Poschenrieder, C. (2003). Phytoremediation: principles and perspectives. Contributions to Science, 2. Institut d’Estudis Catalans, Barcelona, pp. 333–344. Barceló, J., & Poschenrieder, C. (2003). Phytoremediation: principles and perspectives. Contributions to Science, 2. Institut d’Estudis Catalans, Barcelona, pp. 333–344.
Zurück zum Zitat Budel, B., Weber, B., Kuhl, M., Pfanz, H., Sultemeyer, D., & Wessels, D. (2004). Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: Bioalkalization causes chemical weathering in arid landscapes. Geobiology, 2, 261–268.CrossRef Budel, B., Weber, B., Kuhl, M., Pfanz, H., Sultemeyer, D., & Wessels, D. (2004). Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: Bioalkalization causes chemical weathering in arid landscapes. Geobiology, 2, 261–268.CrossRef
Zurück zum Zitat Chen, B., Xiao, X., Zhu, Y. G., Smith, F. A., Xie, Z. M., & Smith, S. E. (2007). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 379, 226–234.CrossRef Chen, B., Xiao, X., Zhu, Y. G., Smith, F. A., Xie, Z. M., & Smith, S. E. (2007). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 379, 226–234.CrossRef
Zurück zum Zitat Cornejo, P., Meier, S., Borie, G., Rilig, M. C., & Borie, F. (2008). Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to cu and Zn sequestration. Science of the Total Environment, 406, 154–160.CrossRef Cornejo, P., Meier, S., Borie, G., Rilig, M. C., & Borie, F. (2008). Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to cu and Zn sequestration. Science of the Total Environment, 406, 154–160.CrossRef
Zurück zum Zitat Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40.CrossRef Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40.CrossRef
Zurück zum Zitat Ferrol, N., Tamayo, E., & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany, 67, 6253–6265.CrossRef Ferrol, N., Tamayo, E., & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany, 67, 6253–6265.CrossRef
Zurück zum Zitat Frank, A. B. (1885). Uber di auf werzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdischeplize. Berichte der Deutschen Botanischen Gesellschaft, 3, 128–145. Frank, A. B. (1885). Uber di auf werzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdischeplize. Berichte der Deutschen Botanischen Gesellschaft, 3, 128–145.
Zurück zum Zitat Garg, N., & Aggarwal, N. (2011). Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Mill sp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regulation, 66, 9–26.CrossRef Garg, N., & Aggarwal, N. (2011). Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Mill sp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regulation, 66, 9–26.CrossRef
Zurück zum Zitat Gaur, A., & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528–534. Gaur, A., & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528–534.
Zurück zum Zitat Gillespie, A. W., Farrell, R. E., Walley, F. L., Ross, A. R., Leinweber, P., Eckhardt, K.-U., Regierd, T. Z., & Blyth, R. R. (2011). Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biology and Biochemistry, 43, 766–777.CrossRef Gillespie, A. W., Farrell, R. E., Walley, F. L., Ross, A. R., Leinweber, P., Eckhardt, K.-U., Regierd, T. Z., & Blyth, R. R. (2011). Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biology and Biochemistry, 43, 766–777.CrossRef
Zurück zum Zitat Gohre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1122.CrossRef Gohre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1122.CrossRef
Zurück zum Zitat Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.CrossRef Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.CrossRef
Zurück zum Zitat Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., & Gutierrez- Castorena, M. C. (2009). Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 161, 1288–1298.CrossRef Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., & Gutierrez- Castorena, M. C. (2009). Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 161, 1288–1298.CrossRef
Zurück zum Zitat Gonzalez-Chávez, M. C., Ortega-Larrocea, M. P., Carrillo-González, R., López-Meyer, M., Xoconostle-Cázares, B., Gomez, S. K., Harrison, M. J., Figueroa-López, A. M., & Maldonado-Mendoza, I. E. (2011). Arsenate induces the expression of fungal genes involved in as transport in arbuscular mycorrhiza. Fungal Biology, 115, 1197–1209.CrossRef Gonzalez-Chávez, M. C., Ortega-Larrocea, M. P., Carrillo-González, R., López-Meyer, M., Xoconostle-Cázares, B., Gomez, S. K., Harrison, M. J., Figueroa-López, A. M., & Maldonado-Mendoza, I. E. (2011). Arsenate induces the expression of fungal genes involved in as transport in arbuscular mycorrhiza. Fungal Biology, 115, 1197–1209.CrossRef
Zurück zum Zitat Grcman, H., Vodnik, D., Velikonja-Bolta, S., & Lestan, D. (2003). Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. Journal of Environmental Quality, 32, 500–506.CrossRef Grcman, H., Vodnik, D., Velikonja-Bolta, S., & Lestan, D. (2003). Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. Journal of Environmental Quality, 32, 500–506.CrossRef
Zurück zum Zitat Hassan, S. E. D., Boon, E., St-Arnaud, M., & Hijri, M. (2011). Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal polluted soils. Molecular Ecology, 20, 3469–3483.CrossRef Hassan, S. E. D., Boon, E., St-Arnaud, M., & Hijri, M. (2011). Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal polluted soils. Molecular Ecology, 20, 3469–3483.CrossRef
Zurück zum Zitat Helgason, T., & Fitter, A. H. (2009). Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum Glomeromycota). Journal of Experimental Botany, 60, 2465–2480.CrossRef Helgason, T., & Fitter, A. H. (2009). Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum Glomeromycota). Journal of Experimental Botany, 60, 2465–2480.CrossRef
Zurück zum Zitat Hossain, M. A., Piyatida, P., Teixeira Da Silva, J. A., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 872875, 1–37. https://doi.org/10.1155/2012/872875.CrossRef Hossain, M. A., Piyatida, P., Teixeira Da Silva, J. A., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 872875, 1–37. https://​doi.​org/​10.​1155/​2012/​872875.CrossRef
Zurück zum Zitat Janouskova, M., Pavlikova, D., Macek, T., & Vosatka, M. (2005). Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant and Soil, 272, 29–40.CrossRef Janouskova, M., Pavlikova, D., Macek, T., & Vosatka, M. (2005). Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant and Soil, 272, 29–40.CrossRef
Zurück zum Zitat Jia, X., Zhao, Y., Liu, T., Huang, S., & Chang, Y. (2016). Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Environmental Pollution, 218, 349–357.CrossRef Jia, X., Zhao, Y., Liu, T., Huang, S., & Chang, Y. (2016). Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Environmental Pollution, 218, 349–357.CrossRef
Zurück zum Zitat Joner, E. J., Briones, R., & Leyval, C. (2000). Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil, 226, 227–234.CrossRef Joner, E. J., Briones, R., & Leyval, C. (2000). Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil, 226, 227–234.CrossRef
Zurück zum Zitat Kaldorf, M., Kuhn, A. J., Schroder, W. H., Hildebrandt, U., & Bothe, H. (1999). Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 154, 718–728.CrossRef Kaldorf, M., Kuhn, A. J., Schroder, W. H., Hildebrandt, U., & Bothe, H. (1999). Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 154, 718–728.CrossRef
Zurück zum Zitat Krishnamoorthy, R. (2015). Exploring the biodiversity of arbuscular mycorrhizal fungi and associated endobacteria to improve maize growth under salt stress condition. Dissertation for the degree of doctor of philosophy, Chungbuk National University, South Korea. Krishnamoorthy, R. (2015). Exploring the biodiversity of arbuscular mycorrhizal fungi and associated endobacteria to improve maize growth under salt stress condition. Dissertation for the degree of doctor of philosophy, Chungbuk National University, South Korea.
Zurück zum Zitat Krishnamoorthy, R., Venkateswaran, V., Senthilkumar, M., Anandham, R., Selvakumar, G., Kim, K. Y., Kang, Y. Y., & Sa, T. M. (2017). Potential microbiological approaches for the remediation of heavy metal-contaminated soils. In D. Singh, H. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (pp. 341–366). Singapore: Springer.CrossRef Krishnamoorthy, R., Venkateswaran, V., Senthilkumar, M., Anandham, R., Selvakumar, G., Kim, K. Y., Kang, Y. Y., & Sa, T. M. (2017). Potential microbiological approaches for the remediation of heavy metal-contaminated soils. In D. Singh, H. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (pp. 341–366). Singapore: Springer.CrossRef
Zurück zum Zitat Kroopnick, P. M. (1994). Vapor abatement cost analysis methodology for calculating life cycle costs for hydrocarbon vapor extracted during soil venting. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste (pp. 779–790). New York: Marcel Dekker. Kroopnick, P. M. (1994). Vapor abatement cost analysis methodology for calculating life cycle costs for hydrocarbon vapor extracted during soil venting. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste (pp. 779–790). New York: Marcel Dekker.
Zurück zum Zitat Kulakow, P. A., Schwab, A. P., & Banks, M. K. (2000). Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. International Journal of Phytoremediation, 2, 297–317.CrossRef Kulakow, P. A., Schwab, A. P., & Banks, M. K. (2000). Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. International Journal of Phytoremediation, 2, 297–317.CrossRef
Zurück zum Zitat Latef, A. A. A. (2013). Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. Journal of Agricultural Science and Technology, 15, 1437–1448. Latef, A. A. A. (2013). Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. Journal of Agricultural Science and Technology, 15, 1437–1448.
Zurück zum Zitat Leung, H. M., Ye, Z. H., & Wong, M. H. (2006). Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in as-contaminated soils. Environmental Pollution, 139, 1–8.CrossRef Leung, H. M., Ye, Z. H., & Wong, M. H. (2006). Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in as-contaminated soils. Environmental Pollution, 139, 1–8.CrossRef
Zurück zum Zitat Malik, N., & Biswas, A. K. (2012). Role of higher plants in remediation of metal contaminated sites. Scientific Reviews and Chemical Communications, 2, 141–146. Malik, N., & Biswas, A. K. (2012). Role of higher plants in remediation of metal contaminated sites. Scientific Reviews and Chemical Communications, 2, 141–146.
Zurück zum Zitat Martin, F., Perotto, S., & Bonfante, P. (2007). Mycorrhizal fungi: A fungal community at the interface between soil and roots. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface (pp. 201–236). New York: Marcel Dekker. Martin, F., Perotto, S., & Bonfante, P. (2007). Mycorrhizal fungi: A fungal community at the interface between soil and roots. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface (pp. 201–236). New York: Marcel Dekker.
Zurück zum Zitat Nichols, K. (2003). Characterization of glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi. PhD Dissertation, University of Maryland, College Park, Maryland. Nichols, K. (2003). Characterization of glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi. PhD Dissertation, University of Maryland, College Park, Maryland.
Zurück zum Zitat Nogueira, M. A., Nehls, U., Hampp, R., Poralla, K., & Cardoso, E. J. B. N. (2007). Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant and Soil, 298, 273–284.CrossRef Nogueira, M. A., Nehls, U., Hampp, R., Poralla, K., & Cardoso, E. J. B. N. (2007). Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant and Soil, 298, 273–284.CrossRef
Zurück zum Zitat Pawlowska, T. E., & Charvat, I. (2004). Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 70, 6643–6649.CrossRef Pawlowska, T. E., & Charvat, I. (2004). Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 70, 6643–6649.CrossRef
Zurück zum Zitat Pawlowska, T. E., Chaney, R. L., Chin, M., & Charvat, I. (2000). Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Applied and Environmental Microbiology, 66, 2526–2530.CrossRef Pawlowska, T. E., Chaney, R. L., Chin, M., & Charvat, I. (2000). Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Applied and Environmental Microbiology, 66, 2526–2530.CrossRef
Zurück zum Zitat Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30, 1562–1574.CrossRef Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30, 1562–1574.CrossRef
Zurück zum Zitat Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.CrossRef Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.CrossRef
Zurück zum Zitat Renker, C., Blanke, V., & Buscot, F. (2005). Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environmental Pollution, 135, 255–266.CrossRef Renker, C., Blanke, V., & Buscot, F. (2005). Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environmental Pollution, 135, 255–266.CrossRef
Zurück zum Zitat Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin and soil quality. Canadian Journal of Soil Science, 84, 355–363.CrossRef Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin and soil quality. Canadian Journal of Soil Science, 84, 355–363.CrossRef
Zurück zum Zitat Rillig, M. C. (2005). A connection between fungal hydrophobins and soil water repellency? Pedobiologia, 49, 395–399.CrossRef Rillig, M. C. (2005). A connection between fungal hydrophobins and soil water repellency? Pedobiologia, 49, 395–399.CrossRef
Zurück zum Zitat Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41–53.CrossRef Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41–53.CrossRef
Zurück zum Zitat Rillig, M. C., Wright, S. F., Nichols, K. A., Schmidt, W. F., & Torn, M. S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167–177.CrossRef Rillig, M. C., Wright, S. F., Nichols, K. A., Schmidt, W. F., & Torn, M. S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167–177.CrossRef
Zurück zum Zitat Sanders, I., & Croll, D. (2010). Arbuscular mycorrhiza: The challenge to understand the genetics of the fungal partner. Annual Review of Genetics, 44, 271–292.CrossRef Sanders, I., & Croll, D. (2010). Arbuscular mycorrhiza: The challenge to understand the genetics of the fungal partner. Annual Review of Genetics, 44, 271–292.CrossRef
Zurück zum Zitat Sarma, H. (2011). Metal Hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4, 118–138.CrossRef Sarma, H. (2011). Metal Hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4, 118–138.CrossRef
Zurück zum Zitat Sieverding, E., & Oehl, F. (2006). Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. Journal of Applied Botany and Food Quality, 80, 69–81. Sieverding, E., & Oehl, F. (2006). Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. Journal of Applied Botany and Food Quality, 80, 69–81.
Zurück zum Zitat Singh, H. (2006). Mycorrhizal fungi in rhizosophere bioremediation. In H. Singh (Ed.), Mycoremediation: Fungal bioremediation (pp. 533–572). New York: Wiley.CrossRef Singh, H. (2006). Mycorrhizal fungi in rhizosophere bioremediation. In H. Singh (Ed.), Mycoremediation: Fungal bioremediation (pp. 533–572). New York: Wiley.CrossRef
Zurück zum Zitat Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Cambridge, London: Academic. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Cambridge, London: Academic.
Zurück zum Zitat Srivastava, S., Mishra, S., Tripathi, R. D., Dwivedi, S., Trivedi, P. K., & Tandon, P. K. (2007). Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environmental Science & Technology, 41, 2930–2936.CrossRef Srivastava, S., Mishra, S., Tripathi, R. D., Dwivedi, S., Trivedi, P. K., & Tandon, P. K. (2007). Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environmental Science & Technology, 41, 2930–2936.CrossRef
Zurück zum Zitat Szczygłowska, M., Piekarska, A., Konieczka, P., & Namieśnik, J. (2011). Use of Brassica plants in the phytoremediation and biofumigation processes. International Journal of Molecular Sciences, 12, 7760–7771.CrossRef Szczygłowska, M., Piekarska, A., Konieczka, P., & Namieśnik, J. (2011). Use of Brassica plants in the phytoremediation and biofumigation processes. International Journal of Molecular Sciences, 12, 7760–7771.CrossRef
Zurück zum Zitat Tonin, C., Vandenkoornhuyse, P., Joner, E. J., Straczek, J., & Leyval, C. (2001). Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza, 10, 161–168.CrossRef Tonin, C., Vandenkoornhuyse, P., Joner, E. J., Straczek, J., & Leyval, C. (2001). Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza, 10, 161–168.CrossRef
Zurück zum Zitat Turnau, K., & Mesjasz-Przybylowicz, J. (2003). Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza, 13, 185–190.CrossRef Turnau, K., & Mesjasz-Przybylowicz, J. (2003). Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza, 13, 185–190.CrossRef
Zurück zum Zitat Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta, G., & Bonfante, P. (2006). Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in northern Italy. Environmental Microbiology, 8, 971–983.CrossRef Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta, G., & Bonfante, P. (2006). Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in northern Italy. Environmental Microbiology, 8, 971–983.CrossRef
Zurück zum Zitat Villiers, F., Ducruix, C., Hugouvieux, V., Ezan, N. J. E., Garin, J., Junot, C., & Bourguignon, J. (2011). Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics, 11, 1650–1663.CrossRef Villiers, F., Ducruix, C., Hugouvieux, V., Ezan, N. J. E., Garin, J., Junot, C., & Bourguignon, J. (2011). Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics, 11, 1650–1663.CrossRef
Zurück zum Zitat Vodnik, D., Grcman, H., Macek, I., Van, J., Elteren, J. T., & Kovacevic, M. (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392, 130–136.CrossRef Vodnik, D., Grcman, H., Macek, I., Van, J., Elteren, J. T., & Kovacevic, M. (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392, 130–136.CrossRef
Zurück zum Zitat Weissenhorn, I., Leyval, C., & Berthelin, J. (1995). Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biology and Fertility of Soils, 19, 22–28.CrossRef Weissenhorn, I., Leyval, C., & Berthelin, J. (1995). Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biology and Fertility of Soils, 19, 22–28.CrossRef
Zurück zum Zitat Wilson, G. W. T., Rice, C. W., Rillig, M. C., Springer, A., & Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 12, 452–461.CrossRef Wilson, G. W. T., Rice, C. W., Rillig, M. C., Springer, A., & Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 12, 452–461.CrossRef
Zurück zum Zitat Wright, S. F., Franke-Snyder, M., Morton, J. B., & Upadhyaya, A. (1996). Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181, 193–203.CrossRef Wright, S. F., Franke-Snyder, M., Morton, J. B., & Upadhyaya, A. (1996). Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181, 193–203.CrossRef
Zurück zum Zitat Wu, Z. P., Mcgrouther, K., Huang, J. D., Wu, P. B., Wu, W. D., & Wang, H. L. (2014). Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: Field experiment. Soil Biology and Biochemistry, 68, 283–290.CrossRef Wu, Z. P., Mcgrouther, K., Huang, J. D., Wu, P. B., Wu, W. D., & Wang, H. L. (2014). Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: Field experiment. Soil Biology and Biochemistry, 68, 283–290.CrossRef
Zurück zum Zitat Zarei, M., Konig, S., Hempel, S., Nekouei, M. K., Savaghebi, G., & Buscot, F. (2008). Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution, 156, 1277–1283.CrossRef Zarei, M., Konig, S., Hempel, S., Nekouei, M. K., Savaghebi, G., & Buscot, F. (2008). Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution, 156, 1277–1283.CrossRef
Zurück zum Zitat Zarei, M., Hempel, S., Wubet, T., Schäfer, T., Savaghebi, G., Jouzani, G. S., Nekouei, M. K., & Buscot, F. (2010). Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158, 2757–2765.CrossRef Zarei, M., Hempel, S., Wubet, T., Schäfer, T., Savaghebi, G., Jouzani, G. S., Nekouei, M. K., & Buscot, F. (2010). Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158, 2757–2765.CrossRef
Zurück zum Zitat Zenk, M. H. (1996). Heavy metal detoxification in higher plants: A review. Gene, 179, 21–30.CrossRef Zenk, M. H. (1996). Heavy metal detoxification in higher plants: A review. Gene, 179, 21–30.CrossRef
Zurück zum Zitat Zhang, H., Xu, W., Guo, J., He, Z., & Ma, M. (2005). Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Science, 169, 1059–1065.CrossRef Zhang, H., Xu, W., Guo, J., He, Z., & Ma, M. (2005). Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Science, 169, 1059–1065.CrossRef
Zurück zum Zitat Zhang, J., Tang, X. L., He, X. H., & Liu, J. X. (2015). Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: Potential consequences for soil carbon accumulation. Soil Biology and Biochemistry, 83, 142–149.CrossRef Zhang, J., Tang, X. L., He, X. H., & Liu, J. X. (2015). Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: Potential consequences for soil carbon accumulation. Soil Biology and Biochemistry, 83, 142–149.CrossRef
Zurück zum Zitat Zhang, Y., Hu, J., Bai, J., Wang, J., Yin, R., Wang, J., & Lin, X. (2018a). Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Science of the Total Environment, 628–629, 282–290.CrossRef Zhang, Y., Hu, J., Bai, J., Wang, J., Yin, R., Wang, J., & Lin, X. (2018a). Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Science of the Total Environment, 628–629, 282–290.CrossRef
Zurück zum Zitat Zhipeng, W., Weidong, W., Shenglu, Z., & Shaohua, W. (2016). Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in Pakchoi (Brassica chinensis L.). Pedosphere, 26, 13–26.CrossRef Zhipeng, W., Weidong, W., Shenglu, Z., & Shaohua, W. (2016). Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in Pakchoi (Brassica chinensis L.). Pedosphere, 26, 13–26.CrossRef
Zurück zum Zitat Zhu, X. F., Zheng, C., Hu, Y. T., Jiang, A., Liu, Y., Dong, N. Y., Yang, J. L., & Zheng, S. J. (2011). Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant, Cell & Environment, 34, 1055–1064.CrossRef Zhu, X. F., Zheng, C., Hu, Y. T., Jiang, A., Liu, Y., Dong, N. Y., Yang, J. L., & Zheng, S. J. (2011). Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant, Cell & Environment, 34, 1055–1064.CrossRef
Metadaten
Titel
Management of Heavy Metal Polluted Soils: Perspective of Arbuscular Mycorrhizal Fungi
verfasst von
R. Krishnamoorthy
V. Venkatramanan
M. Senthilkumar
R. Anandham
K. Kumutha
Tongmin Sa
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2772-8_4