Skip to main content
Erschienen in: Journal of Materials Science 15/2018

30.04.2018 | Energy materials

Mangosteen peel-derived porous carbon: synthesis and its application in the sulfur cathode for lithium sulfur battery

verfasst von: Mingzhe Xue, Chen Chen, Yan Tan, Zhiwei Ren, Bing Li, Cunman Zhang

Erschienen in: Journal of Materials Science | Ausgabe 15/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Porous carbon with various structures from micropores (< 2 nm) to hierarchical pores (0–4 nm) was synthesized from biomass waste mangosteen peels via KOH activation process. Microporous carbon was obtained mainly at a low activation temperature of 700 °C or a low alkali/carbon of 3. Hierarchical porous carbon with ultrahigh surface area (> 3000 m2 g−1) and pore volume (> 1.4 cm3 g−1) was obtained at alkali/carbon ratio higher than 3.5 and activation temperature of 800 °C. Sulfur with a high content of 65 wt% was able to be fully accommodated into the pores of hierarchical porous carbon to form C/S composite cathode for lithium sulfur battery while in the case of microporous carbon, residual sulfur on carbon surface was detected. High specific discharge capacities of more than 800 mAh g−1 were achieved from hierarchical porous carbon/S composites at 0.5 C, and the sample synthesized at alkali/carbon of 4 and activation of 800 °C exhibits the best cycling performance. After 500 cycles at 0.5 C, a high discharge capacity of 509 mAh g−1 was maintained, indicating an excellent capacity retention. Relationship between pore characteristics of porous carbon and the electrochemical performance of its sulfur composite was discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRef
2.
Zurück zum Zitat Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52:13186–13200CrossRef Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52:13186–13200CrossRef
3.
Zurück zum Zitat Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49:10545–10562CrossRef Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49:10545–10562CrossRef
4.
Zurück zum Zitat Manthiram A, Chung SH, Zu C (2015) Lithium–sulfur batteries: progress and prospect. Adv Mater 27:1980–2006CrossRef Manthiram A, Chung SH, Zu C (2015) Lithium–sulfur batteries: progress and prospect. Adv Mater 27:1980–2006CrossRef
5.
Zurück zum Zitat Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbn–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506CrossRef Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbn–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506CrossRef
6.
Zurück zum Zitat Wang DW, Zeng QC, Zhou GM, Yin LC, Li F, Cheng HM, Gentle IR, Lu GQM (2013) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1:9382–9394CrossRef Wang DW, Zeng QC, Zhou GM, Yin LC, Li F, Cheng HM, Gentle IR, Lu GQM (2013) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1:9382–9394CrossRef
7.
Zurück zum Zitat Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92:41–63CrossRef Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92:41–63CrossRef
8.
Zurück zum Zitat Zhang S, Zheng M, Cao J, Pang H (2016) Porous carbon/sulfur composite cathode materials for lithium–sulfur batteries. Prog Chem 28:1148–1155 Zhang S, Zheng M, Cao J, Pang H (2016) Porous carbon/sulfur composite cathode materials for lithium–sulfur batteries. Prog Chem 28:1148–1155
9.
Zurück zum Zitat Peng HJ, Huang JQ, Cheng XB, Zhang Q (2017) Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater 7:1700260CrossRef Peng HJ, Huang JQ, Cheng XB, Zhang Q (2017) Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater 7:1700260CrossRef
10.
Zurück zum Zitat Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F (2017) More reliable lithium–sulfur batteries: status, solutions and prospects. Adv Mater 29:1606823CrossRef Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F (2017) More reliable lithium–sulfur batteries: status, solutions and prospects. Adv Mater 29:1606823CrossRef
11.
Zurück zum Zitat Kong L, Peng HJ, Huang JQ, Zhang Q (2017) Review of nanostructured current collectors in lithium–sulfur batteries. Nano Res 10:4027–4054CrossRef Kong L, Peng HJ, Huang JQ, Zhang Q (2017) Review of nanostructured current collectors in lithium–sulfur batteries. Nano Res 10:4027–4054CrossRef
12.
Zurück zum Zitat Imtiaz S, Zhang J, Zafar ZA, Ji S, Huang T, Anderson JA, Zhang Z, Huang Y (2016) Biomass-derived nanostructured porous carbons for lithium–sulfur batteries. Sci China Mater 59:389–407CrossRef Imtiaz S, Zhang J, Zafar ZA, Ji S, Huang T, Anderson JA, Zhang Z, Huang Y (2016) Biomass-derived nanostructured porous carbons for lithium–sulfur batteries. Sci China Mater 59:389–407CrossRef
13.
Zurück zum Zitat Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5:2411–2428CrossRef Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5:2411–2428CrossRef
14.
Zurück zum Zitat Wei SC, Zhang H, Huang YQ, Wang WK, Xia YZ, Yu ZB (2011) Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium–sulfur batteries. Energ Environ Sci 4:736–740CrossRef Wei SC, Zhang H, Huang YQ, Wang WK, Xia YZ, Yu ZB (2011) Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium–sulfur batteries. Energ Environ Sci 4:736–740CrossRef
15.
Zurück zum Zitat Zhao S, Li C, Wang W, Zhang H, Gao M, Xiong X, Wang A, Yuan K, Huang Y, Wang F (2013) A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J Mater Chem A 1:3334–3339CrossRef Zhao S, Li C, Wang W, Zhang H, Gao M, Xiong X, Wang A, Yuan K, Huang Y, Wang F (2013) A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J Mater Chem A 1:3334–3339CrossRef
16.
Zurück zum Zitat Zhang J, Xiang JY, Dong ZM, Liu Y, Wu YS, Xu CM, Du GH (2014) Biomass derived activated carbon with 3D connected architecture for rechargeable lithium–sulfur batteries. Electrochim Acta 116:146–151CrossRef Zhang J, Xiang JY, Dong ZM, Liu Y, Wu YS, Xu CM, Du GH (2014) Biomass derived activated carbon with 3D connected architecture for rechargeable lithium–sulfur batteries. Electrochim Acta 116:146–151CrossRef
17.
Zurück zum Zitat Zhang ST, Zheng MB, Lin ZX, Li NW, Liu YJ, Zhao B, Pang H, Cao JM, He P, Shi Y (2014) Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. J Mater Chem A 2:15889–15896CrossRef Zhang ST, Zheng MB, Lin ZX, Li NW, Liu YJ, Zhao B, Pang H, Cao JM, He P, Shi Y (2014) Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. J Mater Chem A 2:15889–15896CrossRef
18.
Zurück zum Zitat Sun Z, Wang S, Yan L, Xiao M, Han D, Meng Y (2016) Mesoporous carbon materials prepared from litchi shell as sulfur encapsulator for lithium–sulfur battery application. J Power Sources 324:547–555CrossRef Sun Z, Wang S, Yan L, Xiao M, Han D, Meng Y (2016) Mesoporous carbon materials prepared from litchi shell as sulfur encapsulator for lithium–sulfur battery application. J Power Sources 324:547–555CrossRef
19.
Zurück zum Zitat Guo J, Zhang J, Jiang F, Zhao S, Su Q, Du G (2015) Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries. Electrochim Acta 176:853–860CrossRef Guo J, Zhang J, Jiang F, Zhao S, Su Q, Du G (2015) Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries. Electrochim Acta 176:853–860CrossRef
20.
Zurück zum Zitat Geng Z, Xiao Q, Wang D, Yi G, Xu Z, Li B, Zhang C (2016) Improved electrochemical performance of biomass-derived nanoporous carbon/sulfur composites cathode for lithium–sulfur batteries by nitrogen doping. Electrochim Acta 202:131–139CrossRef Geng Z, Xiao Q, Wang D, Yi G, Xu Z, Li B, Zhang C (2016) Improved electrochemical performance of biomass-derived nanoporous carbon/sulfur composites cathode for lithium–sulfur batteries by nitrogen doping. Electrochim Acta 202:131–139CrossRef
21.
Zurück zum Zitat Li H, Gong Y, Fu C, Zhou H, Yang W, Guo M, Li M, Kuang Y (2017) A novel method to prepare a nanotubes@mesoporous carbon composite material based on waste biomass and its electrochemical performance. J Mater Chem A 5:3875–3887CrossRef Li H, Gong Y, Fu C, Zhou H, Yang W, Guo M, Li M, Kuang Y (2017) A novel method to prepare a nanotubes@mesoporous carbon composite material based on waste biomass and its electrochemical performance. J Mater Chem A 5:3875–3887CrossRef
22.
Zurück zum Zitat Helen M, Reddy MA, Diemant T, Golla-Schindler U, Behm RJ, Kaiser U, Fichtner M (2015) Single step transformation of sulphur to Li2S2/Li2S in Li–S batteries. Sci Rep 5:12146CrossRef Helen M, Reddy MA, Diemant T, Golla-Schindler U, Behm RJ, Kaiser U, Fichtner M (2015) Single step transformation of sulphur to Li2S2/Li2S in Li–S batteries. Sci Rep 5:12146CrossRef
23.
Zurück zum Zitat Liu M, Chen Y, Chen K, Zhang N, Zhao X, Zhao F, Dou Z, He X, Wang L (2015) Biomass-derived activated carbon for rechargeable lithium–sulfur batteries. BioResources 10:155–168 Liu M, Chen Y, Chen K, Zhang N, Zhao X, Zhao F, Dou Z, He X, Wang L (2015) Biomass-derived activated carbon for rechargeable lithium–sulfur batteries. BioResources 10:155–168
24.
Zurück zum Zitat Chen ZH, Du XL, He JB, Li F, Wang Y, Li YL, Li B, Xin S (2017) Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. ACS Appl Mater Interfaces 9:33855–33862CrossRef Chen ZH, Du XL, He JB, Li F, Wang Y, Li YL, Li B, Xin S (2017) Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. ACS Appl Mater Interfaces 9:33855–33862CrossRef
25.
Zurück zum Zitat Yang K, Gao QM, Tan YL, Tian WQ, Zhu LH, Yang CX (2015) Microporous carbon derived from Apricot shell as cathode material for lithium–sulfur battery. Microporous Mesoporous Mater 204:235–241CrossRef Yang K, Gao QM, Tan YL, Tian WQ, Zhu LH, Yang CX (2015) Microporous carbon derived from Apricot shell as cathode material for lithium–sulfur battery. Microporous Mesoporous Mater 204:235–241CrossRef
26.
Zurück zum Zitat Yang K, Gao Q, Tan Y, Tian W, Qian W, Zhu L, Yang C (2016) Biomass-derived porous carbon with micropores and small mesopores for high-performance lithium–sulfur batteries. Chem Eur J 22:3239–3244CrossRef Yang K, Gao Q, Tan Y, Tian W, Qian W, Zhu L, Yang C (2016) Biomass-derived porous carbon with micropores and small mesopores for high-performance lithium–sulfur batteries. Chem Eur J 22:3239–3244CrossRef
27.
Zurück zum Zitat Li F, Qin F, Zhang K, Fang J, Lai Y, Li J (2017) Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading. J Power Sources 362:160–167CrossRef Li F, Qin F, Zhang K, Fang J, Lai Y, Li J (2017) Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading. J Power Sources 362:160–167CrossRef
28.
Zurück zum Zitat Moreno N, Caballero A, Hernan L, Morales J (2014) Lithium–sulfur batteries with activated carbons derived from olive stones. Carbon 70:241–248CrossRef Moreno N, Caballero A, Hernan L, Morales J (2014) Lithium–sulfur batteries with activated carbons derived from olive stones. Carbon 70:241–248CrossRef
29.
Zurück zum Zitat Chen F, Yang J, Bai T, Long B, Zhou X (2016) Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium–sulfur batteries. Electrochim Acta 192:99–109CrossRef Chen F, Yang J, Bai T, Long B, Zhou X (2016) Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium–sulfur batteries. Electrochim Acta 192:99–109CrossRef
30.
Zurück zum Zitat Qu J, Lv S, Peng X, Tian S, Wang J, Gao F (2016) Nitrogen-doped porous “green carbon” derived from shrimp shell: combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery. J Alloys Compd 671:17–23CrossRef Qu J, Lv S, Peng X, Tian S, Wang J, Gao F (2016) Nitrogen-doped porous “green carbon” derived from shrimp shell: combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery. J Alloys Compd 671:17–23CrossRef
31.
Zurück zum Zitat Zhang S, Zheng M, Lin Z, Zang R, Huang Q, Xue H, Cao J, Pang H (2016) Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithium–sulfur batteries. RSC Adv 6:39918–39925CrossRef Zhang S, Zheng M, Lin Z, Zang R, Huang Q, Xue H, Cao J, Pang H (2016) Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithium–sulfur batteries. RSC Adv 6:39918–39925CrossRef
32.
Zurück zum Zitat Zhu Y, Xu GY, Zhang XL, Wang SJ, Li C, Wang GX (2017) Hierarchical porous carbon derived from soybean hulls as a cathode matrix for lithium–sulfur batteries. J Alloys Compd 695:2246–2252CrossRef Zhu Y, Xu GY, Zhang XL, Wang SJ, Li C, Wang GX (2017) Hierarchical porous carbon derived from soybean hulls as a cathode matrix for lithium–sulfur batteries. J Alloys Compd 695:2246–2252CrossRef
33.
Zurück zum Zitat Liu J, Liu B, Wang C, Huang Z, Hu L, Ke X, Liu L, Shi Z, Guo Z (2017) Walnut shell—derived activated carbon: synthesis and its application in the sulfur cathode for lithium–sulfur batteries. J Alloys Compd 718:373–378CrossRef Liu J, Liu B, Wang C, Huang Z, Hu L, Ke X, Liu L, Shi Z, Guo Z (2017) Walnut shell—derived activated carbon: synthesis and its application in the sulfur cathode for lithium–sulfur batteries. J Alloys Compd 718:373–378CrossRef
34.
Zurück zum Zitat Chen K, Xue D (2017) Multiple functional biomass-derived activated carbon materials for aqueous supercapacitors, lithium–ion capacitors and lithium–sulfur batteries. Chin J Chem 35:861–866CrossRef Chen K, Xue D (2017) Multiple functional biomass-derived activated carbon materials for aqueous supercapacitors, lithium–ion capacitors and lithium–sulfur batteries. Chin J Chem 35:861–866CrossRef
35.
Zurück zum Zitat Rybarczyk MK, Peng H-J, Tang C, Lieder M, Zhang Q, Titirici M-M (2016) Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries. Green Chem 18:5169–5179CrossRef Rybarczyk MK, Peng H-J, Tang C, Lieder M, Zhang Q, Titirici M-M (2016) Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries. Green Chem 18:5169–5179CrossRef
36.
Zurück zum Zitat Li JT, Wu JH, Zhang T, Huang L (2017) Preparation of biochar from different biomasses adn their application in the Li–S battery. Acta Phys Chim Sin 33:968–975 Li JT, Wu JH, Zhang T, Huang L (2017) Preparation of biochar from different biomasses adn their application in the Li–S battery. Acta Phys Chim Sin 33:968–975
37.
Zurück zum Zitat Vu DL, Seo JS, Lee HY, Lee JW (2017) Activated carbon with hierarchical micro–mesoporous structure obtained from rice husk and its application for lithium–sulfur batteries. RSC Adv 7:4144–4151CrossRef Vu DL, Seo JS, Lee HY, Lee JW (2017) Activated carbon with hierarchical micro–mesoporous structure obtained from rice husk and its application for lithium–sulfur batteries. RSC Adv 7:4144–4151CrossRef
38.
Zurück zum Zitat Zhang Y, Zhao Y, Konarov A, Li Z, Chen P (2015) Effect of mesoporous carbon microtube prepared by carbonizing the poplar catkin on sulfur cathode performance in Li/S batteries. J Alloys Compd 619:298–302CrossRef Zhang Y, Zhao Y, Konarov A, Li Z, Chen P (2015) Effect of mesoporous carbon microtube prepared by carbonizing the poplar catkin on sulfur cathode performance in Li/S batteries. J Alloys Compd 619:298–302CrossRef
39.
Zurück zum Zitat Półrolniczak P, Nowicki P, Wasiński K, Pietrzak R, Walkowiak M (2016) Biomass-derived hierarchical carbon as sulfur cathode stabilizing agent for lithium–sulfur batteries. Solid State Ionics 297:59–63CrossRef Półrolniczak P, Nowicki P, Wasiński K, Pietrzak R, Walkowiak M (2016) Biomass-derived hierarchical carbon as sulfur cathode stabilizing agent for lithium–sulfur batteries. Solid State Ionics 297:59–63CrossRef
40.
Zurück zum Zitat Cheng Y, Ji S, Xu X, Liu J (2015) Wheat straw carbon matrix wrapped sulfur composites as a superior cathode for Li–S batteries. RSC Adv 5:100089–100096CrossRef Cheng Y, Ji S, Xu X, Liu J (2015) Wheat straw carbon matrix wrapped sulfur composites as a superior cathode for Li–S batteries. RSC Adv 5:100089–100096CrossRef
41.
Zurück zum Zitat Guo D, Zheng C, Deng W, Xa Chen, Wei H, Liu M, Huang S (2016) Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage. J Solid State Electrochem 21:1165–1174CrossRef Guo D, Zheng C, Deng W, Xa Chen, Wei H, Liu M, Huang S (2016) Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage. J Solid State Electrochem 21:1165–1174CrossRef
42.
Zurück zum Zitat Zheng M, Hu Q, Zhang S, Tang H, Li L, Pang H (2017) Macroporous activated carbon derived from rapeseed shell for lithium–sulfur batteries. Appl Sci 7:1036CrossRef Zheng M, Hu Q, Zhang S, Tang H, Li L, Pang H (2017) Macroporous activated carbon derived from rapeseed shell for lithium–sulfur batteries. Appl Sci 7:1036CrossRef
43.
Zurück zum Zitat Ji S, Imtiaz S, Sun D, Xin Y, Li Q, Huang T, Zhang Z, Huang Y (2017) Coralline-like N-doped hierarchically porous carbon derived from enteromorpha as a host matrix for lithium–sulfur battery. Chem Eur J 23:18208–18215CrossRef Ji S, Imtiaz S, Sun D, Xin Y, Li Q, Huang T, Zhang Z, Huang Y (2017) Coralline-like N-doped hierarchically porous carbon derived from enteromorpha as a host matrix for lithium–sulfur battery. Chem Eur J 23:18208–18215CrossRef
44.
Zurück zum Zitat Hernández-Rentero C, Córdoba R, Moreno N, Caballero A, Morales J, Olivares-Marín M, Gómez-Serrano V (2017) Low-cost disordered carbons for Li/S batteries: a high-performance carbon with dual porosity derived from cherry pits. Nano Res 11:89–100CrossRef Hernández-Rentero C, Córdoba R, Moreno N, Caballero A, Morales J, Olivares-Marín M, Gómez-Serrano V (2017) Low-cost disordered carbons for Li/S batteries: a high-performance carbon with dual porosity derived from cherry pits. Nano Res 11:89–100CrossRef
45.
Zurück zum Zitat Zhao Y, Wang L, Huang L, Maximov MY, Jin M, Zhang Y, Wang X, Zhou G (2017) Biomass-derived oxygen and nitrogen co-doped porous carbon with hierarchical architecture as sulfur hosts for high-performance lithium/sulfur batteries. Nanomaterials 7:402CrossRef Zhao Y, Wang L, Huang L, Maximov MY, Jin M, Zhang Y, Wang X, Zhou G (2017) Biomass-derived oxygen and nitrogen co-doped porous carbon with hierarchical architecture as sulfur hosts for high-performance lithium/sulfur batteries. Nanomaterials 7:402CrossRef
46.
Zurück zum Zitat Zhao Y, Zhang X, He Y, Liu N, Tan T, Liang C (2017) Biomass derived nitrogen-doped highly porous carbon material with a hierarchical porous structure for high-performance lithium/sulfur batteries. Materials 10:1158CrossRef Zhao Y, Zhang X, He Y, Liu N, Tan T, Liang C (2017) Biomass derived nitrogen-doped highly porous carbon material with a hierarchical porous structure for high-performance lithium/sulfur batteries. Materials 10:1158CrossRef
47.
Zurück zum Zitat Yao H, Zheng G, Li W, McDowell MT, Seh Z, Liu N, Lu Z, Cui Y (2013) Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett 13:3385–3390CrossRef Yao H, Zheng G, Li W, McDowell MT, Seh Z, Liu N, Lu Z, Cui Y (2013) Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett 13:3385–3390CrossRef
48.
Zurück zum Zitat Yu M, Li R, Tong Y, Li Y, Li C, Hong J-D, Shi G (2015) A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries. J Mater Chem A 3:9609–9615CrossRef Yu M, Li R, Tong Y, Li Y, Li C, Hong J-D, Shi G (2015) A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries. J Mater Chem A 3:9609–9615CrossRef
49.
Zurück zum Zitat Zhang Y, Gao Z, Li X (2017) Capillarity composited recycled paper/graphene scaffold for lithium–sulfur batteries with enhanced capacity and extended lifespan. Small 13:1701927CrossRef Zhang Y, Gao Z, Li X (2017) Capillarity composited recycled paper/graphene scaffold for lithium–sulfur batteries with enhanced capacity and extended lifespan. Small 13:1701927CrossRef
50.
Zurück zum Zitat Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725CrossRef Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725CrossRef
51.
Zurück zum Zitat Xue M, Chen C, Ren Z, Tan Y, Li B, Zhang C (2017) A novel mangosteen peels derived hierarchical porous carbon for lithium sulfur battery. Mater Lett 209:594–597CrossRef Xue M, Chen C, Ren Z, Tan Y, Li B, Zhang C (2017) A novel mangosteen peels derived hierarchical porous carbon for lithium sulfur battery. Mater Lett 209:594–597CrossRef
52.
Zurück zum Zitat Quan Y (2017) Microporous carbon materials from bacterial cellulose for lithium–sulfur battery applications. Int J Electrochem Sci 12:5984–5997CrossRef Quan Y (2017) Microporous carbon materials from bacterial cellulose for lithium–sulfur battery applications. Int J Electrochem Sci 12:5984–5997CrossRef
53.
Zurück zum Zitat Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537CrossRef Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537CrossRef
54.
Zurück zum Zitat Zhang B, Xiao M, Wang S, Han D, Song S, Chen G, Meng Y (2014) Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium–sulfur battery applications. ACS Appl Mater Interfaces 6:13174–13182CrossRef Zhang B, Xiao M, Wang S, Han D, Song S, Chen G, Meng Y (2014) Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium–sulfur battery applications. ACS Appl Mater Interfaces 6:13174–13182CrossRef
55.
Zurück zum Zitat Sahore R, Levin BDA, Pan M, Muller DA, DiSalvo FJ, Giannelis EP (2016) Design principles for optimum performance of porous carbons in lithium–sulfur batteries. Adv Energy Mater 6:1600134CrossRef Sahore R, Levin BDA, Pan M, Muller DA, DiSalvo FJ, Giannelis EP (2016) Design principles for optimum performance of porous carbons in lithium–sulfur batteries. Adv Energy Mater 6:1600134CrossRef
56.
Zurück zum Zitat Park MS, Jeong BO, Kim TJ, Kim S, Kim JK, Yu JS, Jung Y, Kim YJ (2014) Disordered mesoporous carbon as polysulfide reservoir for improved cyclic performance of lithium–sulfur batteries. Carbon 68:265–273CrossRef Park MS, Jeong BO, Kim TJ, Kim S, Kim JK, Yu JS, Jung Y, Kim YJ (2014) Disordered mesoporous carbon as polysulfide reservoir for improved cyclic performance of lithium–sulfur batteries. Carbon 68:265–273CrossRef
57.
Zurück zum Zitat Winuprasith T, Suphantharika M (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids 32:383–394CrossRef Winuprasith T, Suphantharika M (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids 32:383–394CrossRef
58.
Zurück zum Zitat Ahmad MA, Alrozi R (2010) Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology. Chem Eng J 165:883–890CrossRef Ahmad MA, Alrozi R (2010) Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology. Chem Eng J 165:883–890CrossRef
59.
Zurück zum Zitat Foo KY, Hameed BH (2012) Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted K2CO3 activation. Chem Eng J 180:66–74CrossRef Foo KY, Hameed BH (2012) Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted K2CO3 activation. Chem Eng J 180:66–74CrossRef
60.
Zurück zum Zitat Chen J, Li S, Fu W, Zhang J (2007) Analysis on trace elements in Garcinia mangostana Linn. Guangdong Trace Elem Sci 14:40–42 Chen J, Li S, Fu W, Zhang J (2007) Analysis on trace elements in Garcinia mangostana Linn. Guangdong Trace Elem Sci 14:40–42
61.
Zurück zum Zitat Liu YB, Liu JP, Zhao Y, Li PY (2006) Analysis of inorganic elements in fruit pericarp and pedicel of Garcinia mangostana L. Spec Wild Econ Anim Plant Res 4:60–61 Liu YB, Liu JP, Zhao Y, Li PY (2006) Analysis of inorganic elements in fruit pericarp and pedicel of Garcinia mangostana L. Spec Wild Econ Anim Plant Res 4:60–61
62.
Zurück zum Zitat Li WF, Liu MN, Wang J, Zhang YG (2017) Progress of lithium/sulfur batteries based on chemically modified carbon. Acta Phys Chim Sin 33:165–182 Li WF, Liu MN, Wang J, Zhang YG (2017) Progress of lithium/sulfur batteries based on chemically modified carbon. Acta Phys Chim Sin 33:165–182
63.
Zurück zum Zitat Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X, Liu JW (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58CrossRef Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X, Liu JW (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58CrossRef
64.
Zurück zum Zitat Chen XY, He YY, Song H, Zhang ZJ (2014) Structure and electrochemical performance of highly nanoporous carbons from benzoate–metal complexes by a template carbonization method for supercapacitor application. Carbon 72:410–420CrossRef Chen XY, He YY, Song H, Zhang ZJ (2014) Structure and electrochemical performance of highly nanoporous carbons from benzoate–metal complexes by a template carbonization method for supercapacitor application. Carbon 72:410–420CrossRef
65.
Zurück zum Zitat Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9:102–106CrossRef Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9:102–106CrossRef
Metadaten
Titel
Mangosteen peel-derived porous carbon: synthesis and its application in the sulfur cathode for lithium sulfur battery
verfasst von
Mingzhe Xue
Chen Chen
Yan Tan
Zhiwei Ren
Bing Li
Cunman Zhang
Publikationsdatum
30.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 15/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2370-9

Weitere Artikel der Ausgabe 15/2018

Journal of Materials Science 15/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.