2020 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
An Insight Into Metal Based Foams
This chapter succinctly presents manufacturing processes for metallic foams. Nine manufacturing process are patented but only five major processes are successfully deployed for commercial purposes. Several manufacturing companies are tirelessly working on conventional and non-conventional approach targeting primarily for more efficient, reliable, reproducible, and low investment production system. These manufacturing systems target separately open-cell and closed-cell metal foams. As historically established in the area of materials science, metal foam properties depend critically on the type of base metal and manufacturing process. The present chapter also provides the glimpse of role of processing parameters which are critical in reproducing the structure and properties of foams. Present chapter also highlights the challenges in the production of metal foams.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559–632. CrossRef Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams.
Progress in Materials Science,
46(6), 559–632.
CrossRef
2.
Zurück zum Zitat Banhart, J. (1999). Metal foams and porous metal structures. Berlin: MIT-Verlag. Banhart, J. (1999).
Metal foams and porous metal structures. Berlin: MIT-Verlag.
3.
Zurück zum Zitat Banhart, J., Ashby, M. F., & Fleck, N. A. (2001). Cellular metals and metal foaming technology. Berlin: MIT-Verlag. Banhart, J., Ashby, M. F., & Fleck, N. A. (2001).
Cellular metals and metal foaming technology. Berlin: MIT-Verlag.
4.
Zurück zum Zitat Banhart, J., Fleck, N. A., & Mortensen, A. (2003). Cellular metals: Manufacture, properties, applications. Berlin: MIT-Verlag. Banhart, J., Fleck, N. A., & Mortensen, A. (2003).
Cellular metals: Manufacture, properties, applications. Berlin: MIT-Verlag.
5.
Zurück zum Zitat Degischer, H.-P., & Kriszt, B. (2010). Handbook of cellular metals: Production, processing, applications. Wiley-InterScience. Degischer, H.-P., & Kriszt, B. (2010). Handbook of cellular metals: Production, processing, applications. Wiley-InterScience.
6.
Zurück zum Zitat Jin, et al. (1990). Method of producing lightweight foamed metal. US Patent No. 4,973,358. Jin, et al. (1990). Method of producing lightweight foamed metal. US Patent No. 4,973,358.
7.
Zurück zum Zitat Jin, et al. (1992). Stabilized metal foam body. US Patent No. 5,112,697. Jin, et al. (1992). Stabilized metal foam body. US Patent No. 5,112,697.
8.
Zurück zum Zitat Jin, et al. (1993). Lightweight metal with isolated pores and its production. US Patent No. 5,221,324. Jin, et al. (1993). Lightweight metal with isolated pores and its production. US Patent No. 5,221,324.
9.
Zurück zum Zitat Kenny, et al. (1994). Process for shape casting of particle stabilized metal foam. US Patent No. 5,281,251. Kenny, et al. (1994). Process for shape casting of particle stabilized metal foam. US Patent No. 5,281,251.
10.
Zurück zum Zitat Niebyski, et al. (1974). Preparation of metal foams with viscosity increasing gases. US Patent No. 3,816,952. Niebyski, et al. (1974). Preparation of metal foams with viscosity increasing gases. US Patent No. 3,816,952.
11.
Zurück zum Zitat Miyoshi, T., Itoh, M., Akiyama, S., & Kitahara, A. (1998). Aluminum foam, ALPORAS, the production process, properties and applications. Shinko Wire Company, Ltd. Miyoshi, T., Itoh, M., Akiyama, S., & Kitahara, A. (1998). Aluminum foam, ALPORAS, the production process, properties and applications. Shinko Wire Company, Ltd.
12.
Zurück zum Zitat Thomas, et al. (1997). Particle-stablilized metal foam and its production. US Patent No. 5,622,542. Thomas, et al. (1997). Particle-stablilized metal foam and its production. US Patent No. 5,622,542.
13.
Zurück zum Zitat Akiyama, et al. (1987). Foamed metal and method of producing same. US Patent No. 4,713,277. Akiyama, et al. (1987). Foamed metal and method of producing same. US Patent No. 4,713,277.
14.
Zurück zum Zitat Elliot, J. C. (1956). Method of producing metal foam. US Patent No. 2,751,289. Elliot, J. C. (1956). Method of producing metal foam. US Patent No. 2,751,289.
15.
Zurück zum Zitat ERG Inc. Oakland, USA. Duocel® Aluminum Foam–ERG Aerospace. ( https://www.ergaerospace.com) (Access on 13/03/2019). ERG Inc. Oakland, USA. Duocel® Aluminum Foam–ERG Aerospace. (
https://www.ergaerospace.com) (Access on 13/03/2019).
16.
Zurück zum Zitat Schwartz, D. S., & Shih, D.S. (1998). Titanium foams made by gas entrapment. In D. S Schwartz, D. S. Shih, A. G. Evans, & H. N. G. Wadley (Eds.), Porous and cellular materials for structural application. Materials Research Society Proceedings, 521, MRS, Warrendale, PA, USA. Schwartz, D. S., & Shih, D.S. (1998). Titanium foams made by gas entrapment. In D. S Schwartz, D. S. Shih, A. G. Evans, & H. N. G. Wadley (Eds.),
Porous and cellular materials for structural application. Materials Research Society Proceedings, 521, MRS, Warrendale, PA, USA.
17.
Zurück zum Zitat Sang, et al. (1994). Process for producing shaped slabs of particle stabilized foamed metal. US Patent No. 5,334,236. Sang, et al. (1994). Process for producing shaped slabs of particle stabilized foamed metal. US Patent No. 5,334,236.
18.
Zurück zum Zitat Paserin, V., Marcuson, S., Shu, J., & Wilkinson, D. S. (2004). CVD Technique for inco nickel foam production. Advanced Engineering Materials, 6(6), 454–459. CrossRef Paserin, V., Marcuson, S., Shu, J., & Wilkinson, D. S. (2004). CVD Technique for inco nickel foam production.
Advanced Engineering Materials,
6(6), 454–459.
CrossRef
19.
Zurück zum Zitat Akiyama, S., Ueno, H., Imagawa, K., Kitahara, A., Nagata, S., Morimoto, K., et al. (1986). Foamed metal and method of producing same. U.S. Patent 4,713,277. Akiyama, S., Ueno, H., Imagawa, K., Kitahara, A., Nagata, S., Morimoto, K., et al. (1986). Foamed metal and method of producing same. U.S. Patent 4,713,277.
20.
Zurück zum Zitat Baumeister J. (1991). Methods for manufacturing foamable metal bodies. US Patent 5,151,246. Baumeister J. (1991). Methods for manufacturing foamable metal bodies. US Patent 5,151,246.
21.
Zurück zum Zitat Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (n.d.). Metal Foams: A Design Guide. 263. Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (n.d.). Metal Foams: A Design Guide. 263.
22.
Zurück zum Zitat Yu, C. J., & Eifert, H. (1998). Metal foams. Advanced Materials & Processes, 45–47. Yu, C. J., & Eifert, H. (1998). Metal foams.
Advanced Materials & Processes, 45–47.
23.
Zurück zum Zitat MEPURA. (1995). ‘Alulight’ Metallpulver GmbH. Brannau-Ranshofen, Austria. MEPURA. (1995). ‘Alulight’ Metallpulver GmbH. Brannau-Ranshofen, Austria.
24.
Zurück zum Zitat Quadbeck, P., Kümmel, K., Hauser, R., Standke, G., Adler, J., & Stephani, G. (2010) Open cell metal foams-application-oriented structure and material selection, 10. Quadbeck, P., Kümmel, K., Hauser, R., Standke, G., Adler, J., & Stephani, G. (2010) Open cell metal foams-application-oriented structure and material selection, 10.
25.
Zurück zum Zitat Bart-Smith, H., Bastawros, A.-F., Mumm, D. R., Evans, A. G., Sypeck, D. J., & Wadley, H. N. G. (1998). Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Acta Materialia, 46(10), 3583–3592. Bart-Smith, H., Bastawros, A.-F., Mumm, D. R., Evans, A. G., Sypeck, D. J., & Wadley, H. N. G. (1998). Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping.
Acta Materialia,
46(10), 3583–3592.
26.
Zurück zum Zitat Kottar, A., Kriszt, B., & Degisher, H. P. (1999). Shear test in flatwise plane of flat sandwich constructions or sandwich cores. Philadelphia, PA: American Society for Testing and Materials. Kottar, A., Kriszt, B., & Degisher, H. P. (1999). Shear test in flatwise plane of flat sandwich constructions or sandwich cores. Philadelphia, PA: American Society for Testing and Materials.
27.
Zurück zum Zitat ASTM E8 / E8M-16ae1. (2016) Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA. ASTM E8 / E8M-16ae1. (2016) Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA.
28.
Zurück zum Zitat Andrews, E., Sanders, W., & Gibson, L. J. (1999). Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering: A, 270(2), 113–124. CrossRef Andrews, E., Sanders, W., & Gibson, L. J. (1999). Compressive and tensile behaviour of aluminum foams.
Materials Science and Engineering: A,
270(2), 113–124.
CrossRef
29.
Zurück zum Zitat Andrews, E. W., Gioux, G., Onck, P., & Gibson, L. J. (2001). Size effects in ductile cellular solids. Part II: Experimental results. International Journal of Mechanical Sciences, 43(3), 701–713. Andrews, E. W., Gioux, G., Onck, P., & Gibson, L. J. (2001). Size effects in ductile cellular solids. Part II: Experimental results.
International Journal of Mechanical Sciences, 43(3), 701–713.
30.
Zurück zum Zitat Bastawros, A., & McManuis, R. (1998). Case study: Use of digital image analysis software to measure non-uniform deformation in cellular aluminum alloys. Experimental Techniques, 22(2), 35–37. CrossRef Bastawros, A., & McManuis, R. (1998). Case study: Use of digital image analysis software to measure non-uniform deformation in cellular aluminum alloys.
Experimental Techniques,
22(2), 35–37.
CrossRef
31.
Zurück zum Zitat Brigham, E. O. (1988). The fast Fourier transform and its applications. Prentice Hall. Brigham, E. O. (1988). The fast Fourier transform and its applications. Prentice Hall.
32.
Zurück zum Zitat Chen, D. J., Chiang, F. P., Tan, Y. S., & Don, H. S. (1993). Digital speckle-displacement measurement using a complex spectrum method. Applied Optics, 32(11), 1839. CrossRef Chen, D. J., Chiang, F. P., Tan, Y. S., & Don, H. S. (1993). Digital speckle-displacement measurement using a complex spectrum method.
Applied Optics,
32(11), 1839.
CrossRef
33.
Zurück zum Zitat Instron. (1997). Surface displacement analysis user manual. Instron. (1997). Surface displacement analysis user manual.
34.
Zurück zum Zitat Deshpande, V. S., & Fleck, N. A. (2000). Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48(6–7), 1253–1283. CrossRef Deshpande, V. S., & Fleck, N. A. (2000). Isotropic constitutive models for metallic foams.
Journal of the Mechanics and Physics of Solids,
48(6–7), 1253–1283.
CrossRef
35.
Zurück zum Zitat Gioux, G., McCormack, T. M., & Gibson, L. J. (2000). Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences, 42(6), 1097–1117. CrossRef Gioux, G., McCormack, T. M., & Gibson, L. J. (2000). Failure of aluminum foams under multiaxial loads.
International Journal of Mechanical Sciences,
42(6), 1097–1117.
CrossRef
36.
Zurück zum Zitat Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107–124. CrossRef Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives.
Journal of Biomaterials Science, Polymer Edition,
12(1), 107–124.
CrossRef
37.
Zurück zum Zitat Banhart, J., & Seeliger, H. W. (2012). Recent trends in aluminum foam sandwich technology. Advanced Engineering Materials, 14(12), 1082–1087. CrossRef Banhart, J., & Seeliger, H. W. (2012). Recent trends in aluminum foam sandwich technology.
Advanced Engineering Materials,
14(12), 1082–1087.
CrossRef
38.
Zurück zum Zitat Neugebauer, R., & Hipke, T. (2006). Machine tools with metal foams. Advanced Engineering Materials, 8(9), 858–863. CrossRef Neugebauer, R., & Hipke, T. (2006). Machine tools with metal foams.
Advanced Engineering Materials,
8(9), 858–863.
CrossRef
39.
Zurück zum Zitat Baumeister, J., Banhart, J., & Weber, M. (1997). Aluminium foams for transport industry. Materials & Design, 18(4–6), 217–220. CrossRef Baumeister, J., Banhart, J., & Weber, M. (1997). Aluminium foams for transport industry.
Materials & Design,
18(4–6), 217–220.
CrossRef
40.
Zurück zum Zitat Schäffler, P., Hanko, G., Mitterer, H., & Zach, P. (2008). Alulight metal foam products. In Proceedings of the Porous Metals and Metallic Foams. The Japan Institute of Metals Kyoto, Japan, 7–10. Schäffler, P., Hanko, G., Mitterer, H., & Zach, P. (2008). Alulight metal foam products. In
Proceedings of the Porous Metals and Metallic Foams. The Japan Institute of Metals Kyoto, Japan, 7–10.
41.
Zurück zum Zitat Eshraghi, S., & Das, S. (2010). Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 6(7), 2467–2476. CrossRef Eshraghi, S., & Das, S. (2010). Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering.
Acta Biomaterialia,
6(7), 2467–2476.
CrossRef
42.
Zurück zum Zitat Partee, B., Hollister, S. J., & Das, S. (2006). Selective laser sintering process optimization for layered manufacturing of CAPA® 6501 polycaprolactone bone tissue engineering scaffolds. Journal of Manufacturing Science and Engineering, 128(2), 531–540. CrossRef Partee, B., Hollister, S. J., & Das, S. (2006). Selective laser sintering process optimization for layered manufacturing of CAPA® 6501 polycaprolactone bone tissue engineering scaffolds.
Journal of Manufacturing Science and Engineering,
128(2), 531–540.
CrossRef
43.
Zurück zum Zitat Truscott, M., de Beer, D., Vicatos, G., Hosking, K., Barnard, L., Booysen, G., & Ian Campbell, R. (2007). Using RP to promote collaborative design of customised medical implants. Rapid Prototyping Journal, 13(2), 107–114. CrossRef Truscott, M., de Beer, D., Vicatos, G., Hosking, K., Barnard, L., Booysen, G., & Ian Campbell, R. (2007). Using RP to promote collaborative design of customised medical implants.
Rapid Prototyping Journal,
13(2), 107–114.
CrossRef
44.
Zurück zum Zitat Faustini, M. C., Neptune, R. R., Crawford, R. H., & Stanhope, S. J. (2008). Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Transactions on Biomedical Engineering, 55(2), 784–790. CrossRef Faustini, M. C., Neptune, R. R., Crawford, R. H., & Stanhope, S. J. (2008). Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering.
IEEE Transactions on Biomedical Engineering,
55(2), 784–790.
CrossRef
45.
Zurück zum Zitat Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M., Pattanayak, D. K., et al. (2011). Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomaterialia, 7(5), 2327–2336. CrossRef Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M., Pattanayak, D. K., et al. (2011). Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting.
Acta Biomaterialia,
7(5), 2327–2336.
CrossRef
46.
Zurück zum Zitat Wang, Y., Shen, Y., Wang, Z., Yang, J., Liu, N., & Huang, W. (2010). Development of highly porous titanium scaffolds by selective laser melting. Materials Letters, 64(6), 674–676. CrossRef Wang, Y., Shen, Y., Wang, Z., Yang, J., Liu, N., & Huang, W. (2010). Development of highly porous titanium scaffolds by selective laser melting.
Materials Letters,
64(6), 674–676.
CrossRef
47.
Zurück zum Zitat Gohler, H., Jehring, U., Kuemmel, K., Meinert, J., Quadbeck, P., Stephani, G., et al. (2012). Metallic hollow sphere structures—Status and outlook. In Proceedings of Cellular Materials—CellMat 2012, 07.09. November 2012, Dresden. Gohler, H., Jehring, U., Kuemmel, K., Meinert, J., Quadbeck, P., Stephani, G., et al. (2012). Metallic hollow sphere structures—Status and outlook. In
Proceedings of Cellular Materials—CellMat 2012, 07.09. November 2012, Dresden.
48.
Zurück zum Zitat Shapovalow, V. I. (1993). US Patent 5,181, 549. Shapovalow, V. I. (1993). US Patent 5,181, 549.
49.
Zurück zum Zitat Banhart, J. (2000). Metallic foams: Challenges and opportunities (pp. 13–20). Berlin: MIT-Verlag. Banhart, J. (2000).
Metallic foams: Challenges and opportunities (pp. 13–20). Berlin: MIT-Verlag.
50.
Zurück zum Zitat Korner, C., & Singer, R. F. (2000). Processing of metal foams—Challenges and opportunities. Microstructural Investigation and Analysis: Wiley-VCH Verlag GmbH, Weinheim. Korner, C., & Singer, R. F. (2000).
Processing of metal foams—Challenges and opportunities. Microstructural Investigation and Analysis: Wiley-VCH Verlag GmbH, Weinheim.
- Titel
- Manufacturing Methods of Metal Foams
- DOI
- https://doi.org/10.1007/978-981-15-9069-6_3
- Autoren:
-
Dr. Dipen Kumar Rajak
Prof. Manoj Gupta
- Verlag
- Springer Singapore
- Sequenznummer
- 3
- Kapitelnummer
- Chapter 3