Skip to main content
Erschienen in: Journal of Materials Science 5/2018

13.11.2017 | Metals

Manufacturing process of AA5083/nano-γAl2O3 localized composite metal foam fabricated by friction stir processing route (FSP) and microstructural characterization

verfasst von: I. G. Papantoniou, H. P. Kyriakopoulou, D. I. Pantelis, A. Athanasiou-Ioannou, D. E. Manolakos

Erschienen in: Journal of Materials Science | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aluminum alloy AA5083 is a technologically important structural alloy as it is lightweight, with outstanding weldability and formability, moderate corrosion resistance and strength, making it suitable for a wide range of marine and transportation applications. In the present study, AA5083/nano-γAl2O3 composite metal foam was fabricated using a friction stir processing route (FSP). More precisely, the paper presents a first attempt to use grooves for the integration of the foaming and stabilizing agent on the metal foam precursor by FSP. The implementation of grooves allows to control the amount of foaming, integrates the stabilizing particles within the precursor and permits the production of localized metal foams. Unlike the commonly used manufacturing processes, only one plate is required for the production of the precursor sample in the proposed process. Therefore, this process can be easily implemented in the industrial sector. Furthermore, γ-Al2O3 nanostructured reinforcement, which is characterized by increased interfacial energy, was utilized as a stabilizing agent. The precursor specimens were manufactured by mixing blowing agent powder (0.4% w/w TiH2) and stabilization agent nanopowder (2% w/w γ-Al2O3) into the 5083 aluminum alloy matrix using FSP. The effects of the number of FSP passes and the foaming conditions (holding temperature and time) on the pore density, morphology and distribution were investigated. The microstructure and porosity evolution of the so-obtained metal foam was also examined and analyzed. Results indicate that, following the foaming procedure, a porosity of 60% and an equivalent pore diameter ranging from 0.2 to 3.3 mm can be achieved. Moreover, the microstructure was found to be closely related to microhardness distribution perpendicular to the traversing direction of the FSP tool for both precursor and foamed specimens.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gibson LG, Ashby MF (1997) Cellular solids, structure and properties, 2nd edn. Cambridge University Press, CambridgeCrossRef Gibson LG, Ashby MF (1997) Cellular solids, structure and properties, 2nd edn. Cambridge University Press, CambridgeCrossRef
2.
Zurück zum Zitat Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Philadelphia Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Philadelphia
6.
Zurück zum Zitat Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 46:559–632CrossRef Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 46:559–632CrossRef
7.
Zurück zum Zitat Kapat K, Srivas PK, Dhara S (2017) Coagulant assisted foaming—a method for cellular Ti6Al4V: influence of microstructure on mechanical properties. Mater Sci Eng A 689:63–71CrossRef Kapat K, Srivas PK, Dhara S (2017) Coagulant assisted foaming—a method for cellular Ti6Al4V: influence of microstructure on mechanical properties. Mater Sci Eng A 689:63–71CrossRef
8.
Zurück zum Zitat Bhogia S, Nampoothirib J, Ravib KR, Mukherjee M (2017) Influence of nano and micro particles on the expansion and mechanical properties of aluminum foams. Mater Sci Eng A 685:131–138CrossRef Bhogia S, Nampoothirib J, Ravib KR, Mukherjee M (2017) Influence of nano and micro particles on the expansion and mechanical properties of aluminum foams. Mater Sci Eng A 685:131–138CrossRef
11.
Zurück zum Zitat Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78CrossRef Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78CrossRef
12.
Zurück zum Zitat Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans 39A:642–658CrossRef Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans 39A:642–658CrossRef
13.
Zurück zum Zitat Suryanarayanan K, Praveen R, Raghuraman S (2013) Silicon carbide reinforced aluminium metal matrix composites for aerospace applications: a literature review. Int J Innov Res Sci Eng Technol 2:6336–6344 Suryanarayanan K, Praveen R, Raghuraman S (2013) Silicon carbide reinforced aluminium metal matrix composites for aerospace applications: a literature review. Int J Innov Res Sci Eng Technol 2:6336–6344
16.
Zurück zum Zitat Pantelis DI, Karakizis PN, Daniolos NM, Charitidis CA, Koumoulos EP, Dragatogiannis DA (2016) Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Mater Manuf Process 31:264–274CrossRef Pantelis DI, Karakizis PN, Daniolos NM, Charitidis CA, Koumoulos EP, Dragatogiannis DA (2016) Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Mater Manuf Process 31:264–274CrossRef
17.
Zurück zum Zitat Barmouz M, Asadi P, Besharati-Givi MK, Taherishargh M (2011) Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction. Mater Sci Eng A 528:1740–1749CrossRef Barmouz M, Asadi P, Besharati-Givi MK, Taherishargh M (2011) Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction. Mater Sci Eng A 528:1740–1749CrossRef
18.
Zurück zum Zitat Zangabad PS, Khodabakhshi F, Simchi A, Kokabi AH (2016) Fatigue fracture of friction-stir processed Al–Al3Ti–MgO hybrid nanocomposites. Int J Fatigue 87:266–278CrossRef Zangabad PS, Khodabakhshi F, Simchi A, Kokabi AH (2016) Fatigue fracture of friction-stir processed Al–Al3Ti–MgO hybrid nanocomposites. Int J Fatigue 87:266–278CrossRef
19.
Zurück zum Zitat Hangai Y, Utsunomiya T (2009) Fabrication of porous aluminum by friction stir processing. Metall Mater Trans 40A:275–277CrossRef Hangai Y, Utsunomiya T (2009) Fabrication of porous aluminum by friction stir processing. Metall Mater Trans 40A:275–277CrossRef
20.
Zurück zum Zitat Hangai Y, Utsunomiya T, Hasegawa M (2010) Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing. J Mater Process Technol 210:288–292CrossRef Hangai Y, Utsunomiya T, Hasegawa M (2010) Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing. J Mater Process Technol 210:288–292CrossRef
21.
Zurück zum Zitat Utsunomiya T, Tamura K, Hangai Y, Kuwazuru O, Yoshikawa N (2010) Effects of tool rotating rate and pass number on pore structure of A6061 porous aluminum fabricated by using friction stir processing. Mater Trans 51:542–547CrossRef Utsunomiya T, Tamura K, Hangai Y, Kuwazuru O, Yoshikawa N (2010) Effects of tool rotating rate and pass number on pore structure of A6061 porous aluminum fabricated by using friction stir processing. Mater Trans 51:542–547CrossRef
22.
Zurück zum Zitat Hangai Y, Saito K, Utsunomiya T, Kuwazuru O, Yoshikawa N (2014) Fabrication and compression properties of functionally graded foam with uniform pore structures consisting of dissimilar A1050 and A6061 aluminum alloys. Mater Sci Eng A 613:163–170CrossRef Hangai Y, Saito K, Utsunomiya T, Kuwazuru O, Yoshikawa N (2014) Fabrication and compression properties of functionally graded foam with uniform pore structures consisting of dissimilar A1050 and A6061 aluminum alloys. Mater Sci Eng A 613:163–170CrossRef
23.
Zurück zum Zitat Storjohann D, Barabash OM, David SA, Sklad PS, Bloom EE, Babu SS (2005) Fusion and friction stir welding of aluminium metal matrix composites. Metall Mater Trans 36A:3237–3247CrossRef Storjohann D, Barabash OM, David SA, Sklad PS, Bloom EE, Babu SS (2005) Fusion and friction stir welding of aluminium metal matrix composites. Metall Mater Trans 36A:3237–3247CrossRef
24.
Zurück zum Zitat Jata KV, Semiatin SL (2000) Continuous dynamic recrystalliztion during friction stir welding of high strength aluminium alloy. Scr Mater 43:743–749CrossRef Jata KV, Semiatin SL (2000) Continuous dynamic recrystalliztion during friction stir welding of high strength aluminium alloy. Scr Mater 43:743–749CrossRef
25.
Zurück zum Zitat Etter AL, Baudin T, Fredj N, Penelle R (2007) Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater Sci Eng A 445:94–99CrossRef Etter AL, Baudin T, Fredj N, Penelle R (2007) Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater Sci Eng A 445:94–99CrossRef
26.
Zurück zum Zitat Humphreys J, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Science, Oxford Humphreys J, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Science, Oxford
27.
Zurück zum Zitat Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Des 1115:48–574 Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Des 1115:48–574
28.
Zurück zum Zitat Hallberg H, Wallin M, Ristinmaa M (2010) Modeling of continuous dynamic recrystallization in commercial-purity aluminum. Mater Sci Eng A 527:1126–1134CrossRef Hallberg H, Wallin M, Ristinmaa M (2010) Modeling of continuous dynamic recrystallization in commercial-purity aluminum. Mater Sci Eng A 527:1126–1134CrossRef
29.
Zurück zum Zitat Palumbo G, Aust KT, Lehockey EM, Erb U, Lin P (1998) On a more restrictive geometric criterion for “Special” CSL grain boundaries. Scr Mater 38:1685–1690CrossRef Palumbo G, Aust KT, Lehockey EM, Erb U, Lin P (1998) On a more restrictive geometric criterion for “Special” CSL grain boundaries. Scr Mater 38:1685–1690CrossRef
30.
Zurück zum Zitat Prater T (2014) Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronaut 93:366–373CrossRef Prater T (2014) Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronaut 93:366–373CrossRef
31.
Zurück zum Zitat Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites. Mater Sci Eng A 483–484:148–152CrossRef Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites. Mater Sci Eng A 483–484:148–152CrossRef
32.
Zurück zum Zitat Ji SD, Shi QY, Zhang LG, Zou AL, Gao SS, Zan LV (2012) Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry. Comput Mater Sci 63:218–226CrossRef Ji SD, Shi QY, Zhang LG, Zou AL, Gao SS, Zan LV (2012) Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry. Comput Mater Sci 63:218–226CrossRef
33.
Zurück zum Zitat Sutton MA, Yang B, Reynolds AP, Taylor R (2002) Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater Sci Eng 323:160–166CrossRef Sutton MA, Yang B, Reynolds AP, Taylor R (2002) Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater Sci Eng 323:160–166CrossRef
34.
Zurück zum Zitat McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding processing of aluminum alloys. Scr Mater 58:349–354CrossRef McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding processing of aluminum alloys. Scr Mater 58:349–354CrossRef
35.
Zurück zum Zitat Sun T, Roy MJ, Strong D, Withers PJ, Prangnell PB (2017) Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds. J Mater Process Technol 242:92–100CrossRef Sun T, Roy MJ, Strong D, Withers PJ, Prangnell PB (2017) Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds. J Mater Process Technol 242:92–100CrossRef
36.
Zurück zum Zitat El-Rayes MM, El-Danaf AE (2012) The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082. J Mater Process Technol 212:1157–1168CrossRef El-Rayes MM, El-Danaf AE (2012) The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082. J Mater Process Technol 212:1157–1168CrossRef
37.
Zurück zum Zitat Yazdipour A, Shafiei A, Dehghani K (2009) Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083. Mater Sci Eng A 527:192–197CrossRef Yazdipour A, Shafiei A, Dehghani K (2009) Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083. Mater Sci Eng A 527:192–197CrossRef
38.
Zurück zum Zitat Guo JF, Liu J, Sun CN, Maleksaeedi S, Tan MJ, Wei J (2014) Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction stir-processed Al. Mater Sci Eng A 602:143–149CrossRef Guo JF, Liu J, Sun CN, Maleksaeedi S, Tan MJ, Wei J (2014) Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction stir-processed Al. Mater Sci Eng A 602:143–149CrossRef
39.
Zurück zum Zitat Choi DH, Kim YI, Kim DU, Jung SB (2012) Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4. Trans Nonferrous Met Soc China 22:614–618CrossRef Choi DH, Kim YI, Kim DU, Jung SB (2012) Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4. Trans Nonferrous Met Soc China 22:614–618CrossRef
40.
Zurück zum Zitat Song S, Liu F (2016) Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation. Acta Mater 108:85–97CrossRef Song S, Liu F (2016) Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation. Acta Mater 108:85–97CrossRef
41.
Zurück zum Zitat Rodelas J, Lippold J (2013) Characterization of engineered nickel-base alloy surface layers produced by additive friction stir processing. Metallogr Microstruct Anal 2:1–12CrossRef Rodelas J, Lippold J (2013) Characterization of engineered nickel-base alloy surface layers produced by additive friction stir processing. Metallogr Microstruct Anal 2:1–12CrossRef
42.
Zurück zum Zitat Raj SV (2011) Microstructural characterization of metal foams: An examination of the applicability of the theoretical models for modeling foams. Mater Sci Eng A 528:5289–5295CrossRef Raj SV (2011) Microstructural characterization of metal foams: An examination of the applicability of the theoretical models for modeling foams. Mater Sci Eng A 528:5289–5295CrossRef
43.
Zurück zum Zitat Bock J, Jacobi AM (2013) Geometric classification of open-cell metal foams using X-ray micro-computed tomography. Mater Charact 75:35–43CrossRef Bock J, Jacobi AM (2013) Geometric classification of open-cell metal foams using X-ray micro-computed tomography. Mater Charact 75:35–43CrossRef
Metadaten
Titel
Manufacturing process of AA5083/nano-γAl2O3 localized composite metal foam fabricated by friction stir processing route (FSP) and microstructural characterization
verfasst von
I. G. Papantoniou
H. P. Kyriakopoulou
D. I. Pantelis
A. Athanasiou-Ioannou
D. E. Manolakos
Publikationsdatum
13.11.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1802-2

Weitere Artikel der Ausgabe 5/2018

Journal of Materials Science 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.