Skip to main content

30.04.2018 | Manufacturing | News | Onlineartikel

Digitalisation Shortens Planning Process for Forged Parts

Nadine Klein

Until now, planning the production process of a forged part has been costly and time-consuming. In addition, the quality of the result has depended on the designer. The IPH is therefore researching a method to significantly reduce the effort involved in planning the successive forming of a forged part.

In the forging industry, small and medium-sized enterprises (SMEs), in particular, have to manufacture quickly due to competitive pressure. They often do not have the time or capacity to plan the resource-efficient design of the forging sequence for a new component. In individual production steps, the raw material, the so-called semi-finished product, is formed into the required component. Process efficiency depends on the experience and skills of the designer. The Institut für Integrierte Produktion Hannover (IPH) translates this experience and collected expertise into mathematical formulae. With the aid of the boundary conditions described in mathematical terms, a software demonstrator should enable the creation of operational sequence plans high in material efficiency.

"The old planning method meant that this planning process used to take weeks in some cases, but in future it can be completed in minutes," says Yorck Hedicke-Claus from IPH, explaining the advantage of the new method. The finite element method (FEM) has up until now been used to model the forming of geometrically complex bodies and to design the process accordingly. Using a computer program, designers have been able to plan the sequence from the semi-finished product to the required component. The new method reverses this process: the reverse sequence from the component to the semi-finished product is calculated according to technical forming rules, and this creates the individual stages of the forming process. Optimal planning reduces the amount of flash and the energy needed to shape the semi-finished product. The starting point of the method is a 3D sketch of the required component in CAD format, from which the researchers determine the size, contour and other geometric data.

Once programming is complete, comprehensive testing and adaptation phases are carried out. The method is first tested on complex component shapes, i.e. tested for feasibility and adapted accordingly. In the next step, the researchers compare the new program with the FEM simulation used so far and check the quality of the results. Finally, they carry out validation with experiments and compare the forging sequence created in this way with methods already used in industry.

Weiterführende Themen

Die Hintergründe zu diesem Inhalt

2018 | OriginalPaper | Buchkapitel

Introduction to CAD

Solid Modeling and Applications

01.03.2012 | Cover Story | Ausgabe 3/2012

New Forged Steels Energy-efficient Solutions for Stronger Parts

Das könnte Sie auch interessieren

Premium Partner

in-adhesivesMKVSNeuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.



Künstliche Intelligenz und die Potenziale des maschinellen Lernens für die Industrie

Maschinelles Lernen ist die Schlüsseltechnologie für intelligente Systeme. Besonders erfolgreich ist in den letzten Jahren das Lernen tiefer Modelle aus großen Datenmengen – „Deep Learning“. Mit dem Internet der Dinge rollt die nächste, noch größere Datenwelle auf uns zu. Hier bietet die Künstliche Intelligenz besondere Chancen für die deutsche Industrie, wenn sie schnell genug in die Digitalisierung einsteigt.
Jetzt gratis downloaden!


Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.