Skip to main content

2023 | OriginalPaper | Buchkapitel

Mapping and Estimation of Carbon Dioxide Storage in Forest Plantations. The Contribution of the Sentinel-2 Time Series in Increasing Estimates Precision

verfasst von : Saverio Francini, Elia Vangi, Giovanni D’Amico, Guido Cencini, Cecilia Monari, Gherardo Chirici

Erschienen in: Global Challenges for a Sustainable Society

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Forest restoration activities and tree plantations play an important role in combating global warming. On the other hand, quantifying their carbon storage is a challenging task due to very short rotations and the effort and costs required for field analysis, often in remote and hardly accessible regions. In this context, remote sensing combined with new cloud computing platforms offers unprecedented opportunities for monitoring tree plantations globally. In this study, we implemented and demonstrated over a 20-ha tree plantation in Guatemala an approach that exploits Sentinel-2 imagery time series derived metrics and cloud-free composites for mapping carbon storage. Ground data were collected over 20 plots (10-m radius) to train and validate our model, which performance resulted in high (R2 = 0.69, RMSE = 35%). Plus, we estimated the amount of carbon stored in the study area and the relative confidence intervals. Using exclusively the ground data, we estimated the average net equivalent CO2 as 4.95 Mg ha−1 ± 0.9 Mg ha−1, with a confidence interval of 95%. Nevertheless, exploiting the herein presented model and statistical procedure, the estimate was much more precise and the ratio between the variances of the design-based and the model-assisted estimates was 7.1, meaning that, by using remote sensing data, it is possible to reduce the ground sample size by a factor of 7.1 while obtaining estimates with the same precision of those do not exploiting remote sensing data. This is a crucial point for meaningful reducing the effort and the cost required for collecting data on tree plantations while still obtaining statistically rigorous estimates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat D’Amico, G., Francini, S., Giannetti, F., Vangi, E., Travaglini, D., Chianucci, F., Mattioli, W., Grotti, M., Puletti, N., Corona, P., Chirici, G.: A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery. GISci. Remote Sens. 58(8), 1352–1368 (2021). https://doi.org/10.1080/15481603.2021.1988427CrossRef D’Amico, G., Francini, S., Giannetti, F., Vangi, E., Travaglini, D., Chianucci, F., Mattioli, W., Grotti, M., Puletti, N., Corona, P., Chirici, G.: A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery. GISci. Remote Sens. 58(8), 1352–1368 (2021). https://​doi.​org/​10.​1080/​15481603.​2021.​1988427CrossRef
6.
Zurück zum Zitat Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., Allen, R.G., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J., Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N., Scambos, T.A., Schaaf, C., Schott, J.R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J., White, J.C., Wynne, R.H., Zhu, Z.: Current status of Landsat program, science, and applications. Remote Sens. Environ. 225, 127–147 (2019). https://doi.org/10.1016/j.rse.2019.02.015CrossRef Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., Allen, R.G., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J., Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N., Scambos, T.A., Schaaf, C., Schott, J.R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J., White, J.C., Wynne, R.H., Zhu, Z.: Current status of Landsat program, science, and applications. Remote Sens. Environ. 225, 127–147 (2019). https://​doi.​org/​10.​1016/​j.​rse.​2019.​02.​015CrossRef
7.
Zurück zum Zitat Francini, S., McRoberts, R.E., Giannetti, F., Marchetti, M., Scarascia Mugnozza, G., Chirici, G.: The three indices three dimensions (3I3D) algorithm: a new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery. Int. J. Remote Sens. 42(12), 4697–4715 (2021). https://doi.org/10.1080/01431161.2021.1899334CrossRef Francini, S., McRoberts, R.E., Giannetti, F., Marchetti, M., Scarascia Mugnozza, G., Chirici, G.: The three indices three dimensions (3I3D) algorithm: a new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery. Int. J. Remote Sens. 42(12), 4697–4715 (2021). https://​doi.​org/​10.​1080/​01431161.​2021.​1899334CrossRef
8.
Zurück zum Zitat Francini, S., McRoberts, R.E., D’Amico, G., Coops, N.C., Hermosilla, T., White, J.C., Wulder, M.A., Marchetti, M., Mugnozza, G.S., Chirici, G.: An open science and open data approach for the statistically robust estimation of forest disturbance areas. Int. J. Appl. Earth Obs. Geoinf. 106, 102663 (2022) Francini, S., McRoberts, R.E., D’Amico, G., Coops, N.C., Hermosilla, T., White, J.C., Wulder, M.A., Marchetti, M., Mugnozza, G.S., Chirici, G.: An open science and open data approach for the statistically robust estimation of forest disturbance areas. Int. J. Appl. Earth Obs. Geoinf. 106, 102663 (2022)
9.
Zurück zum Zitat Francini, S., D’Amico, G., Vangi, E., Borghi, C., Chirici, G.: Integrating GEDI and landsat: spaceborne Lidar and four decades of optical imagery for the analysis of forest disturbances and biomass changes in Italy. Sensors 22(5), 2015 (2022). https://doi.org/10.3390/s22052015CrossRef Francini, S., D’Amico, G., Vangi, E., Borghi, C., Chirici, G.: Integrating GEDI and landsat: spaceborne Lidar and four decades of optical imagery for the analysis of forest disturbances and biomass changes in Italy. Sensors 22(5), 2015 (2022). https://​doi.​org/​10.​3390/​s22052015CrossRef
10.
Zurück zum Zitat Baetens, L., Desjardins, C., Hagolle, O.: Validation of Copernicus Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sens. 11(4), 433 (2019). https://doi.org/10.3390/rs11040433CrossRef Baetens, L., Desjardins, C., Hagolle, O.: Validation of Copernicus Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sens. 11(4), 433 (2019). https://​doi.​org/​10.​3390/​rs11040433CrossRef
12.
Zurück zum Zitat Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G.: Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014). https://doi.org/10.1111/gcb.12629CrossRef Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G.: Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014). https://​doi.​org/​10.​1111/​gcb.​12629CrossRef
13.
14.
Zurück zum Zitat Mokany, K., Raison, R.J., Prokushkin, A.S.: Critical analysis of root: shoot ratios in a terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006)CrossRef Mokany, K., Raison, R.J., Prokushkin, A.S.: Critical analysis of root: shoot ratios in a terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006)CrossRef
15.
Zurück zum Zitat IPCC: Default value—Guidelines for National Greenhouse Gas Inventories. In: Volume 4 Agriculture, Forestry and Other Land Use, p. 73 (2006) IPCC: Default value—Guidelines for National Greenhouse Gas Inventories. In: Volume 4 Agriculture, Forestry and Other Land Use, p. 73 (2006)
16.
Zurück zum Zitat Shumway, R.H., Stoffer, S.D.: Time Series Analysis and its Applications. Springer Texts in Statistics. ISBN: 978-3-319-52452-8 (2017) Shumway, R.H., Stoffer, S.D.: Time Series Analysis and its Applications. Springer Texts in Statistics. ISBN: 978-3-319-52452-8 (2017)
20.
Zurück zum Zitat Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47(260), 663–685 (1952)CrossRef Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47(260), 663–685 (1952)CrossRef
21.
Zurück zum Zitat Särndal, C.-E., Swensson, B., Wretman, J.: Model Assisted Survey Sampling (1992) Särndal, C.-E., Swensson, B., Wretman, J.: Model Assisted Survey Sampling (1992)
22.
Zurück zum Zitat Chirici, G., Giannetti, F., McRoberts, R.E., Travaglini, D., Pecchi, M., Maselli, F., Chiesi, M., Corona, P.: Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 84, 101959 (2020) 694 p Chirici, G., Giannetti, F., McRoberts, R.E., Travaglini, D., Pecchi, M., Maselli, F., Chiesi, M., Corona, P.: Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 84, 101959 (2020) 694 p
23.
Zurück zum Zitat Vangi, E., D’Amico, G., Francini, S., Giannetti, F., Lasserre, B., Marchetti, M., McRoberts, R.E., Chirici, G.: The effect of forest mask quality in the wall-to-wall estimation of growing stock volume. Remote Sens. 13(5), 1038 (2021)CrossRef Vangi, E., D’Amico, G., Francini, S., Giannetti, F., Lasserre, B., Marchetti, M., McRoberts, R.E., Chirici, G.: The effect of forest mask quality in the wall-to-wall estimation of growing stock volume. Remote Sens. 13(5), 1038 (2021)CrossRef
Metadaten
Titel
Mapping and Estimation of Carbon Dioxide Storage in Forest Plantations. The Contribution of the Sentinel-2 Time Series in Increasing Estimates Precision
verfasst von
Saverio Francini
Elia Vangi
Giovanni D’Amico
Guido Cencini
Cecilia Monari
Gherardo Chirici
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-25840-4_47