Skip to main content

2018 | OriginalPaper | Buchkapitel

Markerless Tumor Gating and Tracking for Lung Cancer Radiotherapy based on Machine Learning Techniques

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The respiratory lung tumor motion poses great challenge for radiation therapy of lung cancer patients. Traditional methods leverage external surrogates or implanted markers to indicate the position of tumors, but these methods suffer from inaccuracies or the risk of pneumothorax. In this chapter fluoroscopic images are employed to indicate the tumor position. We show how machine learning techniques can be used for tumor gating and tracking. Experimental results demonstrate the effectiveness of this new method without external or implanted markers. We also discuss some problems about this new method and point out new promising research frontiers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adler, J.R., Murphy, M.J., Chang, S.D., Hancock, S.L.: Image-guided robotic radiosurgery. Neurosurgery 44, 1299–1307 (1999) Adler, J.R., Murphy, M.J., Chang, S.D., Hancock, S.L.: Image-guided robotic radiosurgery. Neurosurgery 44, 1299–1307 (1999)
2.
Zurück zum Zitat Arslan, S., Yilmaz, A., Bayramgrler, B., Uzman, O., et al.: CT-guided transthoracic fine needle aspiration of pulmonary lesions: accuracy and complications in 294 patients. Int. Med. J. Exp. Clin. Res. textbf8, CR493-497 (2002) Arslan, S., Yilmaz, A., Bayramgrler, B., Uzman, O., et al.: CT-guided transthoracic fine needle aspiration of pulmonary lesions: accuracy and complications in 294 patients. Int. Med. J. Exp. Clin. Res. textbf8, CR493-497 (2002)
3.
Zurück zum Zitat Balter, J.M., Wright, J.N., Newell, L.J., Friemel, B., et al.: Accuracy of a wireless localization system for radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 61, 933–937 (2005)CrossRef Balter, J.M., Wright, J.N., Newell, L.J., Friemel, B., et al.: Accuracy of a wireless localization system for radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 61, 933–937 (2005)CrossRef
4.
Zurück zum Zitat Berbeco, R.I., Mostafavi, H., Sharp, G.C., Jiang, S.B.: Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers. Phys. Med. Biol. 50, 4481–4490 (2005)CrossRef Berbeco, R.I., Mostafavi, H., Sharp, G.C., Jiang, S.B.: Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers. Phys. Med. Biol. 50, 4481–4490 (2005)CrossRef
5.
Zurück zum Zitat Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011)CrossRef Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011)CrossRef
6.
Zurück zum Zitat Cui, Y., Dy, J.G., Sharp, G.C., Alexander, B., Jiang, S.B.: Robust fluoroscopic respiratory gating for lung cancer radiotherapy without implanted fiducial markers. Phys. Med. Biol. 52, 741–755 (2007)CrossRef Cui, Y., Dy, J.G., Sharp, G.C., Alexander, B., Jiang, S.B.: Robust fluoroscopic respiratory gating for lung cancer radiotherapy without implanted fiducial markers. Phys. Med. Biol. 52, 741–755 (2007)CrossRef
7.
Zurück zum Zitat Cui, Y., Dy, J.G., Alexander, B., Jiang, S.B.: Fluoroscopic gating without implanted fiducial markers for lung cancer radiotherapy based on support vector machines. Phys. Med. Biol. 53, N315–327 (2008)CrossRef Cui, Y., Dy, J.G., Alexander, B., Jiang, S.B.: Fluoroscopic gating without implanted fiducial markers for lung cancer radiotherapy based on support vector machines. Phys. Med. Biol. 53, N315–327 (2008)CrossRef
8.
Zurück zum Zitat Cui, Y., Dy, J.G., Sharp, G.C., Alexander, B., Jiang, S.B.: Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers. Phys. Med. Biol. 52, 6229–6242 (2007)CrossRef Cui, Y., Dy, J.G., Sharp, G.C., Alexander, B., Jiang, S.B.: Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers. Phys. Med. Biol. 52, 6229–6242 (2007)CrossRef
9.
Zurück zum Zitat Geraghty, P.R., Kee, S.T., McFarlane, G., Razavi, M.K., et al.: CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: Needle size and pneumothorax rate. Radiology 229, 475–481 (2003)CrossRef Geraghty, P.R., Kee, S.T., McFarlane, G., Razavi, M.K., et al.: CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: Needle size and pneumothorax rate. Radiology 229, 475–481 (2003)CrossRef
10.
Zurück zum Zitat Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall International, Englewood Cliffs (1994)MATH Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall International, Englewood Cliffs (1994)MATH
11.
Zurück zum Zitat Jiang, S.B.: Radiotherapy of mobile tumors. Semin. Radiat. Oncol. 16, 239–248 (2006)CrossRef Jiang, S.B.: Radiotherapy of mobile tumors. Semin. Radiat. Oncol. 16, 239–248 (2006)CrossRef
12.
Zurück zum Zitat Jiang, S.B.: Technical aspects of image-guided respiration-gated radiation therapy. Med. Dosimetry 31, 141–151 (2006)CrossRef Jiang, S.B.: Technical aspects of image-guided respiration-gated radiation therapy. Med. Dosimetry 31, 141–151 (2006)CrossRef
13.
Zurück zum Zitat Keall, P.J., Joshi, S., Vedam, S.S., Siebers, J.V., et al.: Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med. Phys. 32, 942–951 (2005)CrossRef Keall, P.J., Joshi, S., Vedam, S.S., Siebers, J.V., et al.: Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med. Phys. 32, 942–951 (2005)CrossRef
14.
Zurück zum Zitat Keall, P.J., Kini, V.R., Vedam, S.S., Mohan, R.: Motion adaptive x-ray therapy: a feasibility study. Phys. Med. Biol. 46, 1–10 (2001)CrossRef Keall, P.J., Kini, V.R., Vedam, S.S., Mohan, R.: Motion adaptive x-ray therapy: a feasibility study. Phys. Med. Biol. 46, 1–10 (2001)CrossRef
15.
Zurück zum Zitat Lewis, J.H., Li, R., Watkins, W.T., Lawson, J.D., et al.: Markerless lung tumor tracking and trajectory reconstruction using rotational cone-beam projections: a feasibility study. Phys. Med. Biol. 55, 2505–2522 (2010)CrossRef Lewis, J.H., Li, R., Watkins, W.T., Lawson, J.D., et al.: Markerless lung tumor tracking and trajectory reconstruction using rotational cone-beam projections: a feasibility study. Phys. Med. Biol. 55, 2505–2522 (2010)CrossRef
16.
Zurück zum Zitat Li, R., Lewis, J.H., Cervino, L.I., Jiang, S.B.: A feasibility study of markerless fluoroscopic gating for lung cancer radiotherapy using 4DCT templates. Phys. Med. Biol. 54, N489–500 (2009)CrossRef Li, R., Lewis, J.H., Cervino, L.I., Jiang, S.B.: A feasibility study of markerless fluoroscopic gating for lung cancer radiotherapy using 4DCT templates. Phys. Med. Biol. 54, N489–500 (2009)CrossRef
17.
Zurück zum Zitat Li, R., Lewis, J.H., Jiang, S.B.: Markerless fluoroscopic gating for lung cancer radiotherapy using generalized linear discriminant analysis. In: Fourth International Conference on Machine Learning and Applications, pp. 468–472 (2009) Li, R., Lewis, J.H., Jiang, S.B.: Markerless fluoroscopic gating for lung cancer radiotherapy using generalized linear discriminant analysis. In: Fourth International Conference on Machine Learning and Applications, pp. 468–472 (2009)
18.
Zurück zum Zitat Lin, T., Zha, H.: Riemannian manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 30, 796–809 (2008)CrossRef Lin, T., Zha, H.: Riemannian manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 30, 796–809 (2008)CrossRef
19.
Zurück zum Zitat Lin, T., Cervino, L.I., Tang, X., Vasconcelos, N., Jiang, S.B.: Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy. Phys. Med. Biol. 54, 981–992 (2009)CrossRef Lin, T., Cervino, L.I., Tang, X., Vasconcelos, N., Jiang, S.B.: Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy. Phys. Med. Biol. 54, 981–992 (2009)CrossRef
20.
Zurück zum Zitat Lin, T., Li, R., Tang, X., Dy, J.G., Jiang, S.B.: Markerless gating for lung cancer radiotherapy based on machine learning techniques. Phys. Med. Biol. 54, 1555–1563 (2009)CrossRef Lin, T., Li, R., Tang, X., Dy, J.G., Jiang, S.B.: Markerless gating for lung cancer radiotherapy based on machine learning techniques. Phys. Med. Biol. 54, 1555–1563 (2009)CrossRef
21.
Zurück zum Zitat Moser, T., Biederer, J., Nill, S., Remmert, G., Bendl, R.: Detection of respiratory motion in fluoroscopic images for adaptive radiotherapy. Phys. Med. Biol. 53, 3129–3145 (2008)CrossRef Moser, T., Biederer, J., Nill, S., Remmert, G., Bendl, R.: Detection of respiratory motion in fluoroscopic images for adaptive radiotherapy. Phys. Med. Biol. 53, 3129–3145 (2008)CrossRef
22.
Zurück zum Zitat Murphy, M.J., Chang, S.D., Gibbs, I.C., Le, Q.T., et al.: Patterns of patient movement during frameless image-guided radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 55, 1400–1408 (2003)CrossRef Murphy, M.J., Chang, S.D., Gibbs, I.C., Le, Q.T., et al.: Patterns of patient movement during frameless image-guided radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 55, 1400–1408 (2003)CrossRef
23.
Zurück zum Zitat Murphy, M.J.: Tracking moving organs in real time. Semin. Radiat. Oncol. 14, 91–100 (2004)CrossRef Murphy, M.J.: Tracking moving organs in real time. Semin. Radiat. Oncol. 14, 91–100 (2004)CrossRef
24.
Zurück zum Zitat Neicu, T., Shirato, H., Seppenwoolde, Y., Jiang, S.B.: Synchronized moving aperture radiation therapy (smart): average tumour trajectory for lung patients. Phys. Med. Biol. 48, 587–598 (2003)CrossRef Neicu, T., Shirato, H., Seppenwoolde, Y., Jiang, S.B.: Synchronized moving aperture radiation therapy (smart): average tumour trajectory for lung patients. Phys. Med. Biol. 48, 587–598 (2003)CrossRef
25.
Zurück zum Zitat Neicu, T., Berbeco, R., Wolfgang, J., Jiang, S.B.: Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching. Phys. Med. Biol. 51, 617–636 (2006)CrossRef Neicu, T., Berbeco, R., Wolfgang, J., Jiang, S.B.: Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching. Phys. Med. Biol. 51, 617–636 (2006)CrossRef
26.
Zurück zum Zitat Ozhasoglu, C., Murphy, M.J., Glosser, G., Bodduluri, M., et al.: Real-time tracking of the tumor volume in precision radiotherapy and body radiosurgery—a novel approach to compensate for respiratory motion. In: Computer Assisted Radiology and Surgery, pp. 691–696 (2000) Ozhasoglu, C., Murphy, M.J., Glosser, G., Bodduluri, M., et al.: Real-time tracking of the tumor volume in precision radiotherapy and body radiosurgery—a novel approach to compensate for respiratory motion. In: Computer Assisted Radiology and Surgery, pp. 691–696 (2000)
27.
Zurück zum Zitat Papiez, L.: The leaf sweep algorithm for an immobile and moving target as an optimal control problem in radiotherapy delivery. Math. Comput. Model. 37, 735–745 (2003)MathSciNetCrossRefMATH Papiez, L.: The leaf sweep algorithm for an immobile and moving target as an optimal control problem in radiotherapy delivery. Math. Comput. Model. 37, 735–745 (2003)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Papiez, L., Rangaraj, D.: DMLC leaf-pair optimal control for mobile, deforming target. Med. Phys. 32, 275–285 (2005)CrossRef Papiez, L., Rangaraj, D.: DMLC leaf-pair optimal control for mobile, deforming target. Med. Phys. 32, 275–285 (2005)CrossRef
29.
Zurück zum Zitat Rangaraj, D., Papiez, L.: Synchronized delivery of DMLC intensity modulated radiation therapy for stationary and moving targets. Med. Phys. 32, 1802–1817 (2005)CrossRef Rangaraj, D., Papiez, L.: Synchronized delivery of DMLC intensity modulated radiation therapy for stationary and moving targets. Med. Phys. 32, 1802–1817 (2005)CrossRef
30.
Zurück zum Zitat Rottmann, J., Aristophanous, M., Chen, A., Berbeco, R.: A multi-region algorithm for markerless beam’s-eye view lung tumor tracking. Phys. Med. Biol. 55, 5585–5598 (2010)CrossRef Rottmann, J., Aristophanous, M., Chen, A., Berbeco, R.: A multi-region algorithm for markerless beam’s-eye view lung tumor tracking. Phys. Med. Biol. 55, 5585–5598 (2010)CrossRef
31.
Zurück zum Zitat Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRef Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRef
32.
Zurück zum Zitat Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M.J., Adler, J.R.: Robotic motion compensation for respiratory movement during radiosurgery. Comput. Aided Surg. 5, 263–277 (2000)CrossRef Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M.J., Adler, J.R.: Robotic motion compensation for respiratory movement during radiosurgery. Comput. Aided Surg. 5, 263–277 (2000)CrossRef
33.
Zurück zum Zitat Shirato, H., Harada, T., Harabayashi, T., Hida, K., et al.: Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 56, 240–247 (2003)CrossRef Shirato, H., Harada, T., Harabayashi, T., Hida, K., et al.: Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 56, 240–247 (2003)CrossRef
34.
Zurück zum Zitat Shirato, H., Shimizu, S., Kunieda, T., Kitamura, K., et al.: Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 48, 1187–1195 (2000)CrossRef Shirato, H., Shimizu, S., Kunieda, T., Kitamura, K., et al.: Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 48, 1187–1195 (2000)CrossRef
35.
Zurück zum Zitat Suh, Y., Yi, B., Ahn, S., Kim, J., et al.: Aperture maneuver with compelled breath (AMC) for moving tumors: a feasibility study with a moving phantom. Med. Phys. 31, 760–766 (2004)CrossRef Suh, Y., Yi, B., Ahn, S., Kim, J., et al.: Aperture maneuver with compelled breath (AMC) for moving tumors: a feasibility study with a moving phantom. Med. Phys. 31, 760–766 (2004)CrossRef
36.
Zurück zum Zitat Tang, X., Sharp, G.C., Jiang, S.B.: Fluoroscopic tracking of multiple implanted fiducial markers using multiple object tracking. Phys. Med. Biol. 52, 4081–4098 (2007)CrossRef Tang, X., Sharp, G.C., Jiang, S.B.: Fluoroscopic tracking of multiple implanted fiducial markers using multiple object tracking. Phys. Med. Biol. 52, 4081–4098 (2007)CrossRef
37.
Zurück zum Zitat Tsao, A.: Lung Carcinoma: Tumors of the Lungs, Merck Manual Professional Edition (2007) Tsao, A.: Lung Carcinoma: Tumors of the Lungs, Merck Manual Professional Edition (2007)
38.
Zurück zum Zitat Trofimov, A., Rietzel, E., Lu, H.M., Martin, B., et al.: Temporo-spatial IMRT optimization: concepts, implementation and initial results. Phys. Med. Biol. 50, 2779–2798 (2005)CrossRef Trofimov, A., Rietzel, E., Lu, H.M., Martin, B., et al.: Temporo-spatial IMRT optimization: concepts, implementation and initial results. Phys. Med. Biol. 50, 2779–2798 (2005)CrossRef
39.
Zurück zum Zitat Vapnik, V.N.: Statistical Learning Theory. Wiley (1998) Vapnik, V.N.: Statistical Learning Theory. Wiley (1998)
40.
Zurück zum Zitat Webb, S.: The effect on IMRT conformality of elastic tissue movement and a practical suggestion for movement compensation via the modified dynamic multileaf collimator (dmlc) technique. Phys. Med. Biol. 50, 1163–1190 (2005)CrossRef Webb, S.: The effect on IMRT conformality of elastic tissue movement and a practical suggestion for movement compensation via the modified dynamic multileaf collimator (dmlc) technique. Phys. Med. Biol. 50, 1163–1190 (2005)CrossRef
41.
Zurück zum Zitat Webb, S.: Limitations of a simple technique for movement compensation via movement-modified fluence profiles. Phys. Med. Biol. 50, N155–161 (2005)CrossRef Webb, S.: Limitations of a simple technique for movement compensation via movement-modified fluence profiles. Phys. Med. Biol. 50, N155–161 (2005)CrossRef
42.
Zurück zum Zitat Wijesooriya, K., Bartee, C., Siebers, J.V., Vedam, S.S., Keall, P.J.: Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: implications for 4d radiotherapy. Med. Phys. 32, 932–941 (2005)CrossRef Wijesooriya, K., Bartee, C., Siebers, J.V., Vedam, S.S., Keall, P.J.: Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: implications for 4d radiotherapy. Med. Phys. 32, 932–941 (2005)CrossRef
43.
Zurück zum Zitat Xu, Q., Hamilton, R.R., Alexander, B., Jiang, S.: Lung tumor tracking in fluoroscopic video based on optical flow. Med. Phys. 35, 5351–5359 (2008)CrossRef Xu, Q., Hamilton, R.R., Alexander, B., Jiang, S.: Lung tumor tracking in fluoroscopic video based on optical flow. Med. Phys. 35, 5351–5359 (2008)CrossRef
44.
Zurück zum Zitat Xu, Q., Hamilton, R.J., Schowengerdt, R.A., Jiang, S.B.: A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study. Phys. Med. Biol. 52, 5277–5293 (2007)CrossRef Xu, Q., Hamilton, R.J., Schowengerdt, R.A., Jiang, S.B.: A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study. Phys. Med. Biol. 52, 5277–5293 (2007)CrossRef
Metadaten
Titel
Markerless Tumor Gating and Tracking for Lung Cancer Radiotherapy based on Machine Learning Techniques
verfasst von
Tong Lin
Yucheng Lin
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68843-5_12