Skip to main content

2022 | OriginalPaper | Buchkapitel

MAS Network: Surrogate Neural Network for Multi-agent Simulation

verfasst von : Hiroaki Yamada, Masataka Shirahashi, Naoyuki Kamiyama, Yumeka Nakajima

Erschienen in: Multi-Agent-Based Simulation XXII

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multi-agent simulation (MAS) plays an important role in analyzing our societies because it can model complexity in societies and assimilate a variety of social data. However, the execution of MAS is computationally expensive. When running numerous executions to determine optimal policy, it is crucial to develop a more computationally efficient mathematical model that is able to sufficiently substitute for the original simulation. In this paper, we propose a machine learning framework for developing neural network models, called \( {MAS\ network}\), that can substitute for MAS. Furthermore, we propose an effective feature representation of agent parameters and a systematic dataset design for learning. We confirmed that the MAS network replicated the system dynamics of the simulation and that the MAS network accurately learned the sensitivity of output and input relation even at unknown parameter points.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR (2015) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR (2015)
2.
Zurück zum Zitat Bufala, N.D., Kant, J.: An evolutionary approach to find optimal policies with an agent-based simulation. In: AAMAS, pp. 610–618 (2019) Bufala, N.D., Kant, J.: An evolutionary approach to find optimal policies with an agent-based simulation. In: AAMAS, pp. 610–618 (2019)
3.
Zurück zum Zitat Grzeszczuk, R., Terzopoulos, D., Hinton, G.: Neuroanimator: fast neural network emulation and control of physics-based models. In: SIGGRAPH, pp. 9–20 (1998) Grzeszczuk, R., Terzopoulos, D., Hinton, G.: Neuroanimator: fast neural network emulation and control of physics-based models. In: SIGGRAPH, pp. 9–20 (1998)
4.
Zurück zum Zitat Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approximation. In: KDD, pp. 481–490 (2016) Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approximation. In: KDD, pp. 481–490 (2016)
5.
Zurück zum Zitat Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
6.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
7.
Zurück zum Zitat Kutz, J.N.: Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4 (2017)CrossRef Kutz, J.N.: Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4 (2017)CrossRef
8.
Zurück zum Zitat Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8024–8035 (2019) Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8024–8035 (2019)
9.
Zurück zum Zitat Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.W.: Learning to simulate complex physics with graph networks. In: ICML, pp. 8459–8468 (2020) Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.W.: Learning to simulate complex physics with graph networks. In: ICML, pp. 8459–8468 (2020)
10.
Zurück zum Zitat Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014) Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014)
11.
Zurück zum Zitat Yamada, H., Kamiyama, N.: Optimal control of pedestrian flows by congestion forecasts satisfying user equilibrium conditions. In: PRIMA, LNCS, vol. 12568, pp. 299–314 (2020) Yamada, H., Kamiyama, N.: Optimal control of pedestrian flows by congestion forecasts satisfying user equilibrium conditions. In: PRIMA, LNCS, vol. 12568, pp. 299–314 (2020)
13.
Zurück zum Zitat Yamane, S., Ohori, K., Obata, A., Kobayashi, N., Yugami, N.: Agent-based social simulation for a checkout layout design of a specific supermarket. In: MABS, pp. 153–164 (2012) Yamane, S., Ohori, K., Obata, A., Kobayashi, N., Yugami, N.: Agent-based social simulation for a checkout layout design of a specific supermarket. In: MABS, pp. 153–164 (2012)
Metadaten
Titel
MAS Network: Surrogate Neural Network for Multi-agent Simulation
verfasst von
Hiroaki Yamada
Masataka Shirahashi
Naoyuki Kamiyama
Yumeka Nakajima
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-94548-0_9

Premium Partner