Definiert man den Begriff der KI wie im Buch von Elaine Rich Ric83
Artificial Intelligence is the study of how to make computers do things at which, at the moment, people are better.
und bedenkt, dass die Computer uns Menschen insbesondere bezüglich der Lernfähigkeit weit unterlegen sind, dann folgt daraus, dass die Erforschung der Mechanismen des Lernens und die Entwicklung maschineller Lernverfahren eines der wichtigsten Teilgebiete der KI darstellt.
Die Forderung nach maschinellen Lernverfahren ergibt sich aber auch aus dem Blickwinkel des Software-Entwicklers, der zum Beispiel das Verhalten eines autonomen Roboters programmieren soll. Die Struktur des intelligenten Verhaltens kann hierbei so komplex werden, dass es auch mit modernen Hochsprachen wie Prolog oder Python sehr schwierig oder sogar unmöglich wird, dieses annähernd optimal zu programmieren. Ähnlich wie wir Menschen lernen, werden auch heute schon bei der Programmierung von Robotern maschinelle Lernverfahren eingesetzt (siehe Kap. 10 bzw. RGH + 06), oft auch in einer hybriden Mischung aus programmiertem und gelerntem Verhalten.
Anzeige
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Python ist eine moderne Skriptsprache mit sehr übersichtlicher Syntax, mächtigen Datentypen und umfangreicher Standardbibliothek, die sich für diesen Zweck anbietet.
Vorsicht! Dies ist kein Konvergenzbeweis für die Perzeptron Lernregel. Es zeigt nur, dass das Perzeptron konvergiert, wenn die Trainingsdatenmenge aus einem einzigen Beispiel besteht.
Die Funktionale \(\mathop{*}{\mathrm{argmin}}\) und \(\mathop{*}{\mathrm{argmax}}\) bestimmen, ähnlich wie \(\min\) und \(\max\), Minimum oder Maximum einer Menge oder Funktion. Sie liefern aber nicht den Wert des Minimums oder Maximums, sondern die Stelle, an der dieses auftritt, also das Argument und nicht den Funktionswert des Minimums oder Maximums.
Die Dreitagesneuschneesumme ist zwar eines der wichtigsten Merkmale zur Bestimmung der Gefahrenstufe. In der Praxis werden aber noch andere Attribute verwendet [Bra01]. Das hier verwendete Beispiel ist vereinfacht.
In (7.9) wird zur Definition der Entropie der natürlich Logarithmus verwendet. Da hier und auch bei der MaxEnt-Methode nur Entropien verglichen werden, spielt dieser Unterschied keine Rolle (siehe Aufgabe 12).
Besser wäre es allerdings, beim Pruning den Fehler auf den Testdaten zu verwenden. Zumindest dann, wenn die Zahl der Trainingsdaten ausreicht, um eine separate Testmenge zu rechtfertigen.