Skip to main content

2018 | OriginalPaper | Buchkapitel

7. Materials Characterization

verfasst von : Bradley D. Fahlman

Erschienen in: Materials Chemistry

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thus far, we have focused on the relationship between the structure of a material and its properties/applications. However, we have not yet focused on how one is able to determine the structure and composition of materials. That is, when a material is fabricated in the lab, how are we able to assess whether our method was successful? Depending on the nature of the material being investigated, a suite of techniques may be utilized to assess its structure and properties. Whereas some techniques are qualitative, such as providing an image of a surface, others yield quantitative information such as the relative concentrations of atoms that comprise the material. Recent technological advances have allowed materials scientists to accomplish something that was once thought to be impossible: to obtain actual 2-D/3-D images of atomic positions in a solid, in real time. It should be noted that the sensitivity of quantitative techniques also continues to be improved, with some techniques able to measure elemental concentrations down to the parts per billion (ppb) or trillion (ppt) range.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Both flux and brightness are based on a measure of the number of photons per second in a narrow energy bandwidth and in a unit of solid angle in the horizontal and vertical directions. Flux is the number of photons per second passing through a defined area, and is the appropriate measure for experiments that use the entire, unfocused X-ray beam. Brightness is a measure of the intensity and directionality of an X-ray beam. It determines the smallest spot onto which an X-ray beam can be focused.
 
2
A listing of the energies and experimental techniques available from various beamlines at the APS in Argonne National Laboratory: https://​www1.​aps.​anl.​gov/​Beamlines/​Directory
 
3
Scattering from the nucleus does not contribute to coherent scattering due to its relatively large mass, precluding its oscillation from the impinging of incident X-rays.
 
4
The cosine of angle ϕ is simply the x component of a unit vector after it is rotated by ϕ around a unit circle. If the vector is rotated at some constant speed, then its x-value will trace out a cosine wave as a function of time, with amplitude of vector length. Waves of different wavelengths or periods would result in the vectors rotating at different speeds; however, X-ray crystallography uses monochromatic photons of a single wavelength.
 
6
Another way to state this is that for a single crystal, only a few lattice planes will be oriented at their Bragg angle at any one time.
 
8
For a discussion of the Scherrer constant, see: Langford, J. I.; Wilson, A. J. C. J. Appl. Cryst. 1978, 11, 102.
 
10
For a nice example that utilizes SAXS, WAXS, and SANS to determine the structural changes of polyethylene chains following annealing, see: Men, Y.; Rieger, J.; Lindner, P.; Enderle, H. -F.; Lilge, D.; Kristen, M. O.; Mihan, S.; Jiang, S. J. Phys. Chem. B 2005, 109, 16,650.
 
11
For an example of a quantitative SAXS study of a block copolymer-solvent system see: Soni, S. S.; Brotons, G.; Bellour, M.; Narayanan, T.; Gibaud, A. J. Phys. Chem. B 2006, 110, 15,157. An example of the use of SAXS to determine the particle size distribution of nanoparticles, see: Rieker, T.; Hanprasopwattana, A.; Datye, A.; Hubbard, P. Langmuir 1999, 15, 638.
 
12
More information on the components and operation of reflection microscopes may be obtained from http://​www.​microscopyu.​com/​articles/​dic/​reflecteddic.​html
 
13
Synge, E. H. Philos. Mag. 1928, 6, 356.
 
14
For a thorough review of NSOM, see: Dunn, R. C. Chem. Rev. 1999, 99, 2891.
 
16
It is important to note the general trend of decreasing wavelength (and greater resolution) as the velocity of electrons is increased (i.e., higher accelerating voltages).
 
17
a) Cremer, J. T.; Piestrup, M. A.; Gary, C. K.; Pantell, R. H.; Glinka, C. J. Appl. Phys. Lett. 2004, 85, 494.b) https://​www.​nist.​gov/​programs-projects/​towards-neutron-microscopec) Liu, D.; Khaykovich, B.; Gubarev, M. V.; Robertson, J. L.; Crow, L.; Ramsey, B. D.; Moncton, D. E. Nat. Commun. 2013, 4, 2556.
 
19
For an image of the lattice structure and properties of LaB6, see: http://​www.​kimphys.​com/​cathode/​catalog_​PDF/​LaB6_​cathode_​ES423.​pdf
 
20
Perkins, C. L.; Trenary, M.; Tanaka, T.; Otani, S. Surface Sci. 1999, 423, L222.
 
21
a) Nojeh, A.; Wong, W. K.; Baum, A. W.; Pease, R. F.; Dai, H. Appl. Phys. Lett. 2004, 85, 112.b) https://​alc.​surf.​nuqe.​nagoya-u.​ac.​jp/​alc11/​images/​Sample_​proc.​pdfc) Irita, M.; Homma, Y. Surf. Interf. Anal. 2014, 46, 1282.
 
22
Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhimov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E.; Konov, V.; Pimenov, S.; Karabutov, A.; Rakhimov, A.; Suetin, N. J. Appl. Phys. 2001, 89, 2958, and references therein.
 
23
Chanana, R. K.; McDonald, K.; Di Ventra, M.; Pantelides, S. T.; Feldman, L. C.; Chung, G. Y.; Tin, C. C.; Williams, J. R. Appl. Phys. Lett. 2000, 77, 2560.
 
24
For a more detailed description of resolution and magnification of field-emission electron microscopes, see: a) Rose, D. J. J. Appl. Phys. 1956, 27, 215.b) O’Keefe, M. A. Ultramicroscopy 1992, 47, 282.
 
25
Unless otherwise stated, TEM micrographs are collected as bright-field images.
 
26
Formvar is a copolymer of polyvinyl alcohol, formaldehyde, and polyvinyl acetate.
 
27
The very same material obtained by reacting normal cotton with nitric acid and sulfuric acid to yield “gun cotton”—a highly explosive solid that burns with an extremely bright flash leaving behind no residue. Since the thickness is extremely small for the support material and the degree of nitration/sulfation is supposedly less than gun powder compositions, there are no explosion hazards in handling grids. However, the native resin used to make support films is a flammable solid and should be treated with caution.
 
28
Butvar B98 is a polyvinyl butyral resin containing 20% polyvinyl alcohol. These support films are hydrophilic, hence, they are useful for negative staining methods.
 
29
The FIB/lift-out technique yields cross sections of both the film and substrate, which maintains the integrity of the interface; in comparison, ultramicrotomy requires the removal of the polymer film and subsequent embedding/sectioning. For a detailed example, see: White, H.; Pu, Y.; Rafailovich, M.; Sokolov, J.; King, A. H.; Giannuzzi, L. A.; Urbanik-Shannon, C.; Kempshall, B. W.; Eisenberg, A.; Schwarz, S. A.; Strzhemechny, Y. M. Polymer 2001, 42, 1613.
 
30
Virgilio, N.; Favis, B. D.; Pepin, M. -F.; Desjardins, P. Macromolecules 2005, 38, 2368.
 
31
Morniroli, J. -P. “Introduction to Electron Diffraction” in NATO Series II: Mathematics, Physics and Chemistry 2006, 211, 61.
 
32
a) Steeds, J. W.; Morniroli, J. P. Rev. Mineralogy Geochem. 1992, 27, 37. b) Tsuda, K.; Mitsuishi, H.; Terauchi, M.; Kawamura, K. J. Electron Microsc. 2007, 56, 57.
 
33
An excellent book that contains many high-resolution TEM images and the electron diffraction patterns for a variety of archetypical unit cells see: Sindo, D.; Hiraga, K. High-Resolution Electron Microscopy for Materials Science, Springer: New York, 1998.
 
36
It should be noted that EDS and WDS are often referred to as EDX and WDX, or XEDS and XWDS, respectively.
 
37
The detection limits for EDS are typically 0.1 at% (for elements with Z > 10), whereas WDS is able to detect elements present in concentrations of a few ppm.
 
38
Electromagnetic lenses suffer from three types of defects: astigmatism, spherical aberrations, and chromic aberrations. Astigmatism may be easily minimized by placing electromagnets, known as stigmator coils, around the column. The current in these coils may be varied, which will reform the distorted electron beam back into a round shape. Chromic aberrations may be reduced by using a field emission source that produces an electron beam with a sharper distribution of electron energies. However, the third type of defect, spherical aberrations (C s), are not easily circumvented. In fact, this is the primary factor that limits the resolution of electron microscopes to values far below their theoretical values. Recently, techniques have been developed to correct for these defects, often involving the use of multipole lenses (e.g., quadrupole, octapole, etc.) with careful control of their fabrication and operation. For a description of techniques used to design a Cs-corrected HRTEM, see: http://​www.​superstem.​org/​cs-correctionA discussion of methods used for aberration correction in electron microscopy: https://​mrl.​illinois.​edu/​sites/​default/​files/​pdfs/​TEAMReport2000.​pdf
 
39
A collaborative research project between the Lawrence Berkeley National Laboratory, Argonne National Laboratory, Oak Ridge National Laboratory, and the Univ. of Illinois at Urbana-Champagne developed a transmission electron aberration-corrected microscope that achieved the 0.05 nm resolution target in 2009: a) http://​www.​ipd.​anl.​gov/​anlpubs/​2002/​03/​42224.​pdfb) http://​foundry.​lbl.​gov/​facilities/​ncem/​expertise.​html
 
40
Some important precedents that show the utility of Z-contrast imaging: (a) Arslan, I.; Yates, T. J. V.; Browning, N. D.; Midgley, P. A. Science 2005, 309, 2195. (b) Chisholm, M. F.; Kumar, S.; Hazzledine, P. Science 2005, 307, 701. (c) Nellist, P. D.; Pennycook, S. J. Science 1996, 274, 413.
 
41
The photon energies for the light elements are: Be (0.109 keV), B (0.185 keV), C (0.282 keV), N (0.392 keV), O (0.523 keV), and F (0.677 keV). Due to these low energies, the emitted X-rays are easily absorbed by the sample or the components of the detector.
 
42
Bremsstrahlung is from the German word bremsen (“to brake”), and Strahlung (“radiation”) – thus, “braking radiation.” This is characterized by a broad peak that results from deceleration of beam electrons due to scattering from atomic nuclei.
 
43
Pronounced: OH-zhā.
 
44
The energy-dispersing device at the heart of EDS is a semiconducting diode. As an incoming X-ray photon impinges the diode, electron-hole pairs are generated, which yields a measurable electrical current. In order to reduce background noise from photons not originating from the sample, the detector is operated at temperatures of ca. 140 K. A protective window comprising Be, or more recently, ultrathin windows of BN, diamond, or a supported polymer (paralene, norvar), is used to prevent the condensation of vapors (e.g., water, organics) onto the cooled diode. A “windowless” detector may also be used for EDS; with careful operation, this modification allows the detection of elements down as far as Be—with a maximum efficiency of only 2%. It should be noted that although UHV conditions are used in a TEM/SEM instrument, there will always be a low concentration of vapors—often originating from the rotary pump fluid, or the sample itself due to beam-induced volatilization/decomposition, residual solvent evaporation, etc. The buildup of such a coating on the detector window will reduce the energy of the incoming X-rays, which will drastically reduce the detection sensitivity—especially for low-Z elements.
 
45
It should be noted that reflection techniques are also possible through modifying the angle of approach of the incident electron beam of the TEM. Such analysis is referred to as reflection electron microscopy (REM), and accompanying characterizations such as reflection high-energy electron diffraction (RHEED) and reflection electron energy-loss spectroscopy (REELS) are also possible, grouped under the umbrella of reflection high-resolution analytical electron microscopy (RHRAEM). a) For an application of this multifaceted approach to study GaAs(110) surfaces, see: Wang, Z. L. J. Electron. Microsc. Tech. 1988, 10, 35 (citation found online at: http://​www.​osti.​gov/​energycitations/​product.​biblio.​jsp?​osti_​id=​6614173). b) Additional information may be found in Wang, Z. L. Reflection Electron Microscopy and Spectroscopy for Surface Analysis, Cambridge University Press: Cambridge, UK, 1996. (A book synopsis is found online at: http://​www.​nanoscience.​gatech.​edu/​zlwang/​book/​book2_​intro.​pdf)
 
46
For a thorough summary/examples of the details generated from EELS spectra, see: Thomas, J. M.; Williams, B. G.; Sparrow, T. G. Acc. Chem. Res. 1985, 18, 324.
 
47
(a) Williams, B. G.; Sparrow, T. G.; Egerton, R. F. Proc. R. Soc. Lond. Ser. A 1984, 393, 409. (b) Sparrow, T. G.; Williams, B. G.; Thomas, J. M.; Jones, W.; Herley, P. J.; Jefferson, D. A. J. Chem. Soc., Chem. Commun. 1983, 1432. (c) Ferrell, R. A. Phys. Rev. 1956, 101, 554.
 
48
For example, see: Goris, B.; Guzzinati, G.; Fernandez-Lopez, C.; Perez-Juste, J.; Liz-Marzan, L.; Trugler, A.; Hohenester, U.; Verbeeck, J.; Bals, S.; Van Tendeloo, G. J. Phys. Chem. C Nanomater. Interfaces 2014, 118, 15,356.
 
50
For an application of EELS in determining the nature of C bonding in amorphous carbon nanotubes see: Hu, Z. D.; Hu, Y. F.; Chen, Q.; Duan, X. F.; Peng, L.-M. J. Phys. Chem. B. 2006, 110, 8263.
 
51
a) For a comprehensive list of tutorials related to XAFS, see: http://​xafs.​org/​Tutorialsb) For a thorough summary/examples of the details generated from EELS spectra, see: Thomas, J. M.; Williams, B. G.; Sparrow, T. G. Acc. Chem. Res. 1985, 18, 324.
 
52
For information on the analysis of surfaces by IR radiation instead of electrons, there exists a complimentary technique known as reflection absorption infrared spectroscopy (RAIRS). For instance, see: a) Bolina, A. S.; Wolff, A. J.; Brown, W. A. J. Phys. Chem. B 2005, 109, 16,836.b) Wang, X. D.; Tysoe, W. T.; Greenler, R. G.; Truszkowska, K. Surf. Sci. 1991, 258, 335.c) http://​www.​annualreviews.​org/​doi/​10.​1146/​annurev.​physchem.​51.​1.​381
 
53
For example, the development of fibers/fabrics that will actively adsorb and surface deactivate chemical and biological warfare agents, of increasing importance as new modes of terrorist activity continue to emerge. For more information, see: a) http://​web.​mit.​edu/​isn/​ (Institute of Soldier Nanotechnologies at M.I.T.). b) Richards, V. N.; Vohs, J. K.; Williams, G. L.; Fahlman, B. D. J. Am. Ceram. Soc. 2005, 88, 1973.
 
54
Wang, Z. L.; Bentley, J.; Evans, N. D. J. Phys. Chem. B 1999, 103, 751.
 
55
Some of the (potential) energy of the incident electrons is required to release an outer electron from its valence or conduction band, with the remaining being transferred into the kinetic energy of the ejected secondary electron.
 
56
For more details, refer to: Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed., Kluwer: New York, 2003.
 
59
Both carbon and gold coating are performed using a sputter-coating PVD method. The film of choice is most often C since it is less costly and is transparent to X-rays (for EDS). Gold is used to coat very uneven surfaces, and is only useful when EDS is not being performed (strong Au signal would mask other elements present in the sample).
 
60
Rades, S.; Hodoroaba, V. D.; Salge, T.; Wirth, T.; Lobera, M. P.; Labrador, R. H.; Natte, K.; Behnke, T.; Gross, T.; Unger, W. E. S. RSC Adv. 2014, 4, 49,577.
 
61
The effect of charging can be controlled by either altering the position of the sample with regard to the incident electron beam, or using an argon ion (Ar+) gun to neutralize the charge.
 
62
A recent issue of the MRS Bulletin was devoted to in situ TEM: MRS Bull. 2008, 33.
 
63
For a historical background of ESEM development, see: http://​www.​danilatos.​com/​
 
65
For instance, see: van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandbergen, H. W.; Vanmaekelbergh, D. Nano Lett. 2008, 8, 3959.
 
66
For example, in situ growth of carbon nanotubes: Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. -L. Nano Lett. 2007, 7, 2234.
 
69
For instance, see: Wang, Z. L.; Poncharal, P.; de Heer, W. A. Pure Appl. Chem. 2000, 72, 209. May be accessed online at: http://​www.​iupac.​org/​publications/​pac/​2000/​pdf/​7201x0209.​pdf
 
71
Chiaramonti, A. N.; Schreiber, D. K.; Egelhoff, W. F.; Seidman, D. N.; Petford-Long, A. K. 2008, 93, 103,113.
 
72
Klein, K. L.; Anderson, I. M.; De Jonge, N. J. Microsc. 2011, 242, 117.
 
73
Zheng, H.; Smith, R. K.; Jun, Y. -W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Science 2009, 324, 1309.
 
74
In contrast to SEM, EDS, and AES that use incident X-rays of ca. 10 keV, XPS is less damaging to beam-sensitive samples due to the use of “soft” X-rays, of much less energy (1–1.5 keV).
 
75
A very detailed example of XPS to distinguish among Li salts for Li-ion battery applications is: Dedryvere, R.; Leroy, S.; Martinez, H.; Blanchard, R.; Lemordant, D.; Gonbeau, D. J. Phys. Chem. B 2006, 110, 12,986.
 
76
For instance, see:a) Seah, M. P.; White, R. Surf. Interf. Anal. 2002, 33, 960.b) Libra, J.; Matolin, V. Surf. Sci. 2006, 600, 2317.c) https://​core.​ac.​uk/​download/​pdf/​34898173.​pdfd) In addition to angle-resolved PES, photoluminescence spectroscopy is typically used as a nondestructive means to delineate the electronic properties of materials. For more information, see: (i) Glinka, Y. D.; Lin, S.-H.; Hwang, L.-P.; Chen, Y.-T. J. Phys. Chem. B 2000, 104, 8652. (ii) Wu, J.; Han, W.-Q.; Walukiewicz, W.; Ager, J. W.; Shan, W.; Haller, E. E.; Zettl, A. Nano Lett. 2004, 4, 647.
 
77
For an application example of EXAFS, see: Borgna, A.; Stagg, S. M.; Resasco, D. E. J. Phys. Chem. B 1998, 102, 5077. An example of XPS and XAFS (XANES and EXAFS), see: Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M. M.; Mangeney, C.; Villain, F.; Fievet, F. Langmuir 2005, 21, 6788.
 
78
For an application example of REFLEXAFS, see: d’Acapito, F.; Emelianov, I.; Relini, A.; Cavotorta, P.; Gliozzi, A.; Minicozzi, V.; Morante, S.; Solari, P. L.; Rolandi, R. Langmuir 2002, 18, 5277.
 
79
Gervasini, A.; Manzoli, M.; Martra, G.; Ponti, A.; Ravasio, N.; Sordelli, L.; Zaccheria, F. J. Phys. Chem. B 2006, 110, 7851.
 
80
Data analysis represents the most essential and time-consuming aspects of these techniques (as well as EELS). Typically, sample spectra are compared to reference samples that contain the probed element with similar valences and bonding motifs. In this example, Cu metal foil was used for the Cu-Cu interactions, and CuO/Cu2O were used for the Cu-O contributions. A variety of software programs are used for detailed curve-fitting, in order to obtain information regarding the chemical environment of the sample. For example, see: a) http://​www.​dragon.​lv/​eda/​b) http://​www.​xsi.​nl/​software.​htmlc) http://​www.​xpsdata.​com/​
 
82
The presence of these satellites are indicative of Cu2+. For instance, see: (a) Espinos, J. P.; Morales, J.; Barranco A.; Caballero, A.; Holgado, J. P.; Gonzalez-Elipe, A. R. J. Phys. Chem. B 2002, 106, 6921. (b) Morales, J.; Caballero, A.; Holgado, J. P.; Espinos, J. P.; Gonzalez-Elipe, A. R. J. Phys. Chem. B 2002, 106, 10,185. (c) Fuggle, J. C.; Alvarado, S. F. Phys. Rev. A 1980, 22, 1615 (describes the cause of peak broadening in XPS spectra, related to core-level lifetimes).
 
83
In an excited 2s1 state, with an energy of 19.8 eV and a lifetime of ca. 4000 s.
 
84
Many references exist for MIES studies of surfaces, most often carried out in tandem with UPS (to gain information for both the surface and immediate subsurface of the sample). For example, see: (a) Johnson, M. A.; Stefanovich, E. V.; Truong, T. N.; Gunster, J.; Goodman, D. W. J. Phys. Chem. B 1999, 103, 3391. (b) Kim, Y. D.; Wei, T.; Stulz, J.; Goodman, D. W. Langmuir 2003, 19, 1140 (very nice work that describes the shortfall of UPS alone, and the utility of a tandem UPS/MIES approach).
 
85
Note: though conventional RBS is carried out with He+ ions (which will backscatter from any atom with a greater Z ), heavier ions such as C, O, Si, or Cl may be used in order to prevent background backscattering interactions with the matrix. For example, use of incident O ions to eliminate backscattering from lattice O atoms for the RBS analysis of ceramic oxides.
 
86
Simulations for ion scattering techniques such as RBS are typically compared with actual spectra in order to characterize the surface features. There are many such algorithms; for example: (a) Kido, Y.; Koshikawa, T. J. Appl. Phys. 1990, 67, 187. (b) Doolittle, L. R. Nucl. Instrum. Methods 1986, B15, 227 (RUMP program).
 
87
Many such systems exist; some examples include: a) Brookhaven National Laboratory (https://​www.​bnl.​gov/​tandem/​) b) Western Michigan University (https://​wmich.​edu/​physics/​accelerator)c) University of Kentucky (http://​www.​pa.​uky.​edu/​accelerator/​)
 
88
Also known as forward recoil scattering (FRS) or hydrogen forward scattering (HFS).
 
89
Naab, F. U.; Holland, O. W.; Duggan, J. L.; McDaniel, F. D. J. Phys. Chem. B 2005, 109, 1415, and references therein.
 
91
For background information regarding polymer characterization using MALDI, see:a) Montaudo, G.; Samperi, F.; Montaudo, M. S. Prog. Polym. Sci. 2006, 31, 277.b) http://​ws680.​nist.​gov/​publication/​get_​pdf.​cfm?​pub_​id=​852404
 
93
Typically, the majority of secondary ions are ejected from the top two or three monolayers (10–20 Å) of the sample.
 
94
For instance, the ion concentration of the impinging ion beam must be <1% of the number of surface molecules. If this “static limit” is breached, a residue from molecular fragmentation will build up on the surface, which depletes the signal.
 
95
The use of fullerene ion sources represents an area of increasing interest. For example, see: Cheng, J.; Winograd, N. Anal. Chem. 2005, 77, 3651, and references therein.
 
96
Winograd, N. Anal. Chem. 2005, 77, 142A.
 
97
For example, see: (a) Delcorte, A.; Medard, N.; Bertrand, P. Anal. Chem. 2002, 74, 4955. (b) Delcorte, A.; Bour, J.; Aubriet, F.; Muller, J. -F.; Bertrand, P. Anal. Chem. 2003, 75, 6875.
 
98
Marcus, A.; Winograd, N. Anal. Chem. 2006, 78, 141.
 
99
For instance, see:a) Chandra, S. Appl. Surf. Sci. 2003, 203–204, 679.b) Allen, G. C.; Brown, I. T. Eur. Mass Spectrom. 1995, 1, 493.c) Chandra, S.; Lorey, D. R. Int. J. Mass Spectrom. 2007, 260, 90.
 
103
Hombourger, C.; Staub, P. F.; Schuhmacher, M.; Desse, F.; de Chambost, E.; Hitzman, C. Appl. Surf. Sci. 2003, 203–204, 383.
 
104
Seidman, D. N. Annu. Rev. Mater. Res. 2007, 37, 127, and references therein.
 
105
For example, see:a) Larson, D. J.; Petford-Long, A. K.; Ma, Y. Q.; Cerezo, A. Acta. Mater. 2004, 52, 2847.b) Gault, B.; Menand, A.; de Geuser, F.; Deconihout, B.; Danoix, F. Appl. Phys. Lett. 2006, 88, 114,101.
 
106
A recent issue of MRS Bulletin is focused on APT: MRS Bull. 2009, 34 (Oct. 2009).
 
107
Seidman, D. N.; Stiller, K. MRS Bull. 2009, 34, 717.
 
108
Perea, D. E.; Hemesath, E. R.; Schwalbach, E. J.; Lensch-Falk, J. L.; Voorhees, P. W.; Lauhon, L. J. Nature Nanotechnol. 2009, 4, 315.
 
109
Perea, D. E.; Arslan, I.; Liu, J.; Ristanovic, Z.; Kovarik, L.; Arey, B. W.; Lercher, J. A.; Bare, S. R.; Weckhuysen, B. M. Nat. Commun. 2015, 6, 7589.
 
110
Record players are once again rising in popularity, as audiophiles believe the sound quality far surpasses that of digital media.
 
111
For a recent review of atomic manipulation using AFM, see: Custance, O.; Perez, R.; Morita, S. Nature Nanotechnol. 2009, 4, 803.
 
112
Near-field scanning optical microscopy (NSOM) (discussed at the beginning of this chapter) is often grouped alongside other SPM techniques. However, for our discussion, we will focus on AFM and STM since these use physical probes to interrogate a surface, rather than focused light.
 
113
For example, see: Zhang, J.; Chi, Q.; Ulstrup, J. Langmuir 2006, 22, 6203.
 
114
For example, see: (a) France, C. B.; Frame, F. A.; Parkinson, B. A. Langmuir 2006, 22, 7507. (b) Li, W.-S.; Kim, K. S.; Jiang, D. -L.; Tanaka, H.; Kawai, T.; Kwon, J. H.; Kim, D.; Aida, T. J. Am. Chem. Soc. 2006, 128, 10,527. (c) Namai, Y.; Matsuoka, O. J. Phys. Chem. B 2006, 110, 6451.
 
115
For a recent precedent, see: Park, J. B.; Jaeckel, B.; Parkinson, B. A. Langmuir 2006, 22, 5334, and references therein. For a thorough recent review, see: Wan, L. -J. Acc. Chem. Res. 2006, 39, 334.
 
116
For example, see: Alam, M. S.; Dremov, V.; Muller, P.; Postnikov, A. V.; Mal, S. S.; Hussain, F.; Kortz, U. Inorg. Chem. 2006, 45, 2866.
 
117
Examples of some common forces that may exist between a surface and an AFM tip are Van der Waal, electrostatic, covalent bonding, capillary, and magnetic. In addition to providing information regarding the topography of the surface (constant force mode), forces may be applied to understand the morphology of a surface – for example, to determine the frictional force between the tip and surface, or the elasticity/hardness of a surface feature. For instance, see: Tranchida, D.; Piccarolo, S.; Soliman, M. Macromolecules 2006, 39, 4547, and references therein.
 
118
For example, see: O’Dwyer, C.; Gay, G.; Viaris de Lesegno, B.; Weiner, J. Langmuir 2004, 20, 8172, and references therein.
 
119
For example, see: a) Cho, Y.; Ivanisevic, A. Langmuir 2006, 22, 1768. b) Poggi, M. A.; Lillehei, P. T.; Bottomley, L. A. Chem. Mater. 2005, 17, 4289. c) Gourianova, S.; Willenbacher, N.; Kutschera, M. Langmuir 2005, 21, 5429.
 
120
For example, see: a) Polking, M.; Huan, M. G.; Yourdkhani, A.; Petkov, V.; Kisielowski, C. F.; Volkov, V.; Zhu, Y.; Caruntu, G.; Alivisatos, P. A.; Ramesh, R. Nat. Mater. 2012, 11, 700.b) Takamura, Y.; Chopdekar, R. V.; Scholl, A.; Doran, A.; Liddle, J. A.; Harteneck, B.; Suzuji, Y. Nano Lett. 2006, 6, 1287. c) Li, Y.; Tevaarwerk, E.; Chang, R. P. H. Chem. Mater. 2006, 18, 2552.
 
121
For example, see: Zhang, J.; Roberts, C. J.; Shakesheff, K. M.; Davies, M. C.; Tendler, S. J. B. Macromolecules 2003, 36, 1215, and references therein.
 
122
For a thorough description of SECM, see: Gardner, C. E.; Macpherson, J. V. Anal. Chem. 2002, 74, 576A.
 
124
a) Nanoparticle-terminated tips: Vakarelski, I. U.; Higashitani, K. Langmuir 2006, 22, 2931.b) Nanotube-terminated tips: Hafner, J. H.; Cheung, C. -L.; Oosterkamp, T. H.; Lieber, C. M. J. Phys. Chem. B 2001, 105, 743. c) Nanotube-terminated tips: Wilson, N. R.; Macpherson, J. V. Nano Lett. 2003, 3, 1365.
 
125
An AFM probe responds to the average force between the sample surface and a group of tip atoms that are in close proximity to the surface. In order to image individual atoms by SPM, the surface–tip interactions must be limited to the nearest atom(s) on the tip periphery. Hence, an AFM image will not show individual atoms, but rather an average surface, with its ultimate resolution dependent on the sharpness of the tip structure. In contrast, STM is capable of atomic resolution since the tunneling current passes only through the tip atom that is nearest the sample surface.
 
126
Named after Brunauer, Emmett, and Teller.
 
127
Tandem TGA/DSC instruments are commercially available, for example: http://​www.​tainstruments.​com/​simultaneous-tgadsc/​
 
128
An analogous (older) technique is known as differential thermal analysis (DTA), which yields the same information as DSC.
 
Literatur
1.
Zurück zum Zitat Flegler SL, Heckman JW, Klomparens KL. Scanning and transmission Electron microscopy: an introduction. New York: W. H. Freeman; 1993. Flegler SL, Heckman JW, Klomparens KL. Scanning and transmission Electron microscopy: an introduction. New York: W. H. Freeman; 1993.
2.
Zurück zum Zitat Leng Y. Materials characterization: introduction to microscopic and spectroscopic methods. 2nd ed. New York: Wiley; 2013.CrossRef Leng Y. Materials characterization: introduction to microscopic and spectroscopic methods. 2nd ed. New York: Wiley; 2013.CrossRef
3.
Zurück zum Zitat Egerton R, Physical F. Principles of Electron microscopy: an introduction to TEM, SEM, and AEM. 2nd ed. Springer: New York; 2016.CrossRef Egerton R, Physical F. Principles of Electron microscopy: an introduction to TEM, SEM, and AEM. 2nd ed. Springer: New York; 2016.CrossRef
4.
Zurück zum Zitat Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. 2nd ed. New York: Springer; 2009.CrossRef Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. 2nd ed. New York: Springer; 2009.CrossRef
5.
Zurück zum Zitat Echlin P. Handbook of sample preparation for scanning electron microscopy and X-Ray microanalysis. New York: Springer; 2009.CrossRef Echlin P. Handbook of sample preparation for scanning electron microscopy and X-Ray microanalysis. New York: Springer; 2009.CrossRef
6.
Zurück zum Zitat Sawyer LC, Grubb DT, Meyers GF. Polymer microscopy: characterization and evaluation of materials. 3rd ed. New York: Springer; 2008. Sawyer LC, Grubb DT, Meyers GF. Polymer microscopy: characterization and evaluation of materials. 3rd ed. New York: Springer; 2008.
7.
Zurück zum Zitat Zhou W, Wang ZL. Scanning microscopy for nanotechnology: techniques and applications. New York: Springer; 2006. Zhou W, Wang ZL. Scanning microscopy for nanotechnology: techniques and applications. New York: Springer; 2006.
8.
Zurück zum Zitat Goldstein J, Newbury D, Michael JR, Ritchie NWM, Scott JHJ, Joy DC. Scanning electron microscopy and X-ray microanalysis. 4th ed. New York: Springer; 2018.CrossRef Goldstein J, Newbury D, Michael JR, Ritchie NWM, Scott JHJ, Joy DC. Scanning electron microscopy and X-ray microanalysis. 4th ed. New York: Springer; 2018.CrossRef
9.
Zurück zum Zitat Brundle CR, Evans CA, Wilson S. Encyclopedia of materials characterization – surfaces, interfaces, thin films. New York: Elsevier; 1992. Brundle CR, Evans CA, Wilson S. Encyclopedia of materials characterization – surfaces, interfaces, thin films. New York: Elsevier; 1992.
10.
Zurück zum Zitat Campbell D, Pethrick PA, White JR. Polymer characterization. 2nd ed. Cheltenham: Stanley Thornes; 2000. Campbell D, Pethrick PA, White JR. Polymer characterization. 2nd ed. Cheltenham: Stanley Thornes; 2000.
11.
Zurück zum Zitat Campbell D. Polymer characterization: physical techniques. 2nd ed. New York: CRC Press; 2017. Campbell D. Polymer characterization: physical techniques. 2nd ed. New York: CRC Press; 2017.
12.
Zurück zum Zitat Criddle WJ, Ellis GP. Spectral and chemical characterization of organic compounds: a laboratory handbook. 3rd ed. New York: Wiley; 1990. Criddle WJ, Ellis GP. Spectral and chemical characterization of organic compounds: a laboratory handbook. 3rd ed. New York: Wiley; 1990.
13.
Zurück zum Zitat Dinardo N, Nanoscale J. Characterization of surfaces and interfaces. 2nd ed. Wiley: New York; 2004. Dinardo N, Nanoscale J. Characterization of surfaces and interfaces. 2nd ed. Wiley: New York; 2004.
14.
Zurück zum Zitat Brune D, Hellborg R, Hunderi O. Surface characterization: a User’s sourcebook. New York: Wiley; 1997.CrossRef Brune D, Hellborg R, Hunderi O. Surface characterization: a User’s sourcebook. New York: Wiley; 1997.CrossRef
15.
Zurück zum Zitat Czanderna AW, Madey TE, Powell CJ. Beam effects, surface topography, and depth profiling in surface analysis (methods of surface characterization). New York: Plenum Press; 1998. Czanderna AW, Madey TE, Powell CJ. Beam effects, surface topography, and depth profiling in surface analysis (methods of surface characterization). New York: Plenum Press; 1998.
16.
Zurück zum Zitat Czanderna AW, Hercules DM. Ion spectroscopies for surface analysis (methods of surface characterization). New York: Springer; 1991.CrossRef Czanderna AW, Hercules DM. Ion spectroscopies for surface analysis (methods of surface characterization). New York: Springer; 1991.CrossRef
17.
Zurück zum Zitat Brandon DD, Kaplan WD. Microstructural characterization of materials. New York: Wiley; 1999. Brandon DD, Kaplan WD. Microstructural characterization of materials. New York: Wiley; 1999.
18.
Zurück zum Zitat Pecharsky V, Zavalij P. Fundamentals of powder diffraction and structural characterization of materials. 2nd ed. New York: Springer; 2008. Pecharsky V, Zavalij P. Fundamentals of powder diffraction and structural characterization of materials. 2nd ed. New York: Springer; 2008.
19.
Zurück zum Zitat Waseda Y, Matsubara E, Shinoda K. X-ray diffraction crystallography: introduction, examples and solved problems. New York: Springer; 2011.CrossRef Waseda Y, Matsubara E, Shinoda K. X-ray diffraction crystallography: introduction, examples and solved problems. New York: Springer; 2011.CrossRef
20.
Zurück zum Zitat Seek OH, Murphy B. X-ray diffraction: modern experimental techniques. Singapore: Pan Stanford; 2015.CrossRef Seek OH, Murphy B. X-ray diffraction: modern experimental techniques. Singapore: Pan Stanford; 2015.CrossRef
21.
Zurück zum Zitat Lee M. X-ray diffraction for materials research: from fundamentals to applications. New York: Apple Academic Press; 2016.CrossRef Lee M. X-ray diffraction for materials research: from fundamentals to applications. New York: Apple Academic Press; 2016.CrossRef
22.
Zurück zum Zitat Cahn R. Concise encyclopedia of materials characterization. 2nd ed. San Diego: Elsevier; 2005. Cahn R. Concise encyclopedia of materials characterization. 2nd ed. San Diego: Elsevier; 2005.
23.
Zurück zum Zitat Chou NJ. Characterization of polymers (materials characterization). New York: Momentum Press; 2010. Chou NJ. Characterization of polymers (materials characterization). New York: Momentum Press; 2010.
Metadaten
Titel
Materials Characterization
verfasst von
Bradley D. Fahlman
Copyright-Jahr
2018
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-024-1255-0_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.