Skip to main content

2011 | OriginalPaper | Buchkapitel

12. Materials for Bone Graft Substitutes and Osseous Tissue Regeneration

verfasst von : Steven B. Nicoll

Erschienen in: Biomaterials for Tissue Engineering Applications

Verlag: Springer Vienna

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bone is the principal component of the skeletal system. It is comprised of an extracellular matrix that is characterized by a hierarchical and heterogeneous structure with features that span from the nanoscale to the macroscale and interact to perform the various functions of the tissue. For large defects, traditional therapies for bone repair include tissue grafts, which are limited by supply (autografts) and the potential for disease transmission (allografts). Alternatively, commercially available products used for bone reconstruction do not necessarily approximate the hierarchical nanoscale structure of the natural tissue. This chapter will focus on recent advances in the development of select biomimetic, self-assembled and nanocomposite materials for use in the repair and regeneration of osseous tissues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baron R. Anatomy and ultrastructure of bone. In: Favus MJ, editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippencott Williams & Wilkins: Philadelphia, PA, 1999. p. 3–10. Baron R. Anatomy and ultrastructure of bone. In: Favus MJ, editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippencott Williams & Wilkins: Philadelphia, PA, 1999. p. 3–10.
2.
Zurück zum Zitat Boskey AL. The organic and inorganic matrices. In: Hollinger JO, Einhorn TA, Doll B, Sfeir C, editors. Bone Tissue Engineering. CRC Press: Boca Raton, FL, 2005. p. 91–123. Boskey AL. The organic and inorganic matrices. In: Hollinger JO, Einhorn TA, Doll B, Sfeir C, editors. Bone Tissue Engineering. CRC Press: Boca Raton, FL, 2005. p. 91–123.
3.
Zurück zum Zitat Gehron Robey P, Bianco P, Termine JD. The cellular and biology and molecular biochemistry of bone formation. In: Coe FL, Favus MJ, editors. Disorders of Bone and Mineral Metabolism. Raven Press: New York, NY, 1992. Gehron Robey P, Bianco P, Termine JD. The cellular and biology and molecular biochemistry of bone formation. In: Coe FL, Favus MJ, editors. Disorders of Bone and Mineral Metabolism. Raven Press: New York, NY, 1992.
4.
Zurück zum Zitat Lian JB, Stein GS, Canalis E, Gehron Robey P, Boskey AL. Bone formation: Osteoblast lineage cells, growth factors, matrix proteins, and the mineralization process. In: Favus MJ, editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippencott Williams & Wilkins: Philadelphia, PA, 1999. p. 14–29. Lian JB, Stein GS, Canalis E, Gehron Robey P, Boskey AL. Bone formation: Osteoblast lineage cells, growth factors, matrix proteins, and the mineralization process. In: Favus MJ, editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippencott Williams & Wilkins: Philadelphia, PA, 1999. p. 14–29.
5.
Zurück zum Zitat Boskey AL. Variations in bone mineral properties with age and disease. J Musculoskelet Neuronal Interact 2002;2:532–534. Boskey AL. Variations in bone mineral properties with age and disease. J Musculoskelet Neuronal Interact 2002;2:532–534.
6.
7.
Zurück zum Zitat Aubin JE. Advances in the osteoblast lineage. Biochem Cell Biol 1998;76:899–910.CrossRef Aubin JE. Advances in the osteoblast lineage. Biochem Cell Biol 1998;76:899–910.CrossRef
8.
Zurück zum Zitat Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 1986;206:262–266.CrossRef Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 1986;206:262–266.CrossRef
9.
Zurück zum Zitat Weiner S, Traub W. Crystal size and organization in bone. Connect Tissue Res 1989;21:589–595.CrossRef Weiner S, Traub W. Crystal size and organization in bone. Connect Tissue Res 1989;21:589–595.CrossRef
10.
Zurück zum Zitat Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys 1998;20:92–102.CrossRef Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys 1998;20:92–102.CrossRef
11.
Zurück zum Zitat Weiner S, Wagner HD. The material bone: structure mechanical function relations. Annu Rev Mater Sci 1998;28:271–298.CrossRef Weiner S, Wagner HD. The material bone: structure mechanical function relations. Annu Rev Mater Sci 1998;28:271–298.CrossRef
12.
Zurück zum Zitat Hench LL, Wilson J. Introduction. In: Hench LL, Wilson JW, editors. Introduction to Bioceramics. World Scientific: Singapore, 1993. p. 1–24.CrossRef Hench LL, Wilson J. Introduction. In: Hench LL, Wilson JW, editors. Introduction to Bioceramics. World Scientific: Singapore, 1993. p. 1–24.CrossRef
13.
Zurück zum Zitat Einhorn TA, Lee CA. Bone regeneration: new findings and potential clinical applications. J Am Acad Orthop Surg 2001;9:157–165. Einhorn TA, Lee CA. Bone regeneration: new findings and potential clinical applications. J Am Acad Orthop Surg 2001;9:157–165.
15.
Zurück zum Zitat Khan SF, Cammissa FP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg 2005;13:77–86. Khan SF, Cammissa FP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg 2005;13:77–86.
16.
Zurück zum Zitat Fowler BL, Dall BE, Rowe DE. Complications associated with harvesting autogeneous iliac bone graft. Am J Orthop 1995;24:895–903. Fowler BL, Dall BE, Rowe DE. Complications associated with harvesting autogeneous iliac bone graft. Am J Orthop 1995;24:895–903.
17.
Zurück zum Zitat Goulet J, Senunas L, DeSilva G, Greenfield M. Autogenous iliac crest bone graft: complications and functional assessment. Clin Orthop Relat Res 1997;339:76–81.CrossRef Goulet J, Senunas L, DeSilva G, Greenfield M. Autogenous iliac crest bone graft: complications and functional assessment. Clin Orthop Relat Res 1997;339:76–81.CrossRef
18.
Zurück zum Zitat Vaccaro A. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 2002;25(5 Suppl):s571–s578. Vaccaro A. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 2002;25(5 Suppl):s571–s578.
19.
Zurück zum Zitat Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 2006;27:964–973.CrossRef Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 2006;27:964–973.CrossRef
20.
Zurück zum Zitat Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007;1:245–260.CrossRef Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007;1:245–260.CrossRef
21.
Zurück zum Zitat Rihn JA, Kirkpatrick K, Albert TJ. Graft options in posterolateral and posterior interbody lumbar fusion. Spine 2010;35:1629–1639.CrossRef Rihn JA, Kirkpatrick K, Albert TJ. Graft options in posterolateral and posterior interbody lumbar fusion. Spine 2010;35:1629–1639.CrossRef
22.
Zurück zum Zitat Pacaccio DJ, Stern SF. Demineralized bone matrix: basic science and clinical applications. Clin Podiatr Med Surg 2005;22:599–606CrossRef Pacaccio DJ, Stern SF. Demineralized bone matrix: basic science and clinical applications. Clin Podiatr Med Surg 2005;22:599–606CrossRef
23.
Zurück zum Zitat Bae HW, Zhao L, Kanim LE, et al. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine 2006;31:1299–1306; discussion 1307–1308.CrossRef Bae HW, Zhao L, Kanim LE, et al. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine 2006;31:1299–1306; discussion 1307–1308.CrossRef
24.
Zurück zum Zitat Hee CK, Jonikas MA, Nicoll SB. Influence of three-dimensional scaffold on the expression of osteogenic differentiation markers by human dermal fibroblasts. Biomaterials 2006;27:875–884.CrossRef Hee CK, Jonikas MA, Nicoll SB. Influence of three-dimensional scaffold on the expression of osteogenic differentiation markers by human dermal fibroblasts. Biomaterials 2006;27:875–884.CrossRef
25.
Zurück zum Zitat LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev 2008;108:4742–4753.CrossRef LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev 2008;108:4742–4753.CrossRef
26.
Zurück zum Zitat LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 2002;395:81–98.CrossRef LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 2002;395:81–98.CrossRef
27.
Zurück zum Zitat LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 1993;14:65–88.CrossRef LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 1993;14:65–88.CrossRef
28.
Zurück zum Zitat Nagano M, Nakamura T, Kokubo T, Tanahashi M, Ogawa M. Differences of bone bonding ability and degradation behavior in vivo between amorphous calcium phosphate and highly crystalline hydroxylapatite coating. Biomaterials 1996;17:1771–1777.CrossRef Nagano M, Nakamura T, Kokubo T, Tanahashi M, Ogawa M. Differences of bone bonding ability and degradation behavior in vivo between amorphous calcium phosphate and highly crystalline hydroxylapatite coating. Biomaterials 1996;17:1771–1777.CrossRef
29.
Zurück zum Zitat Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Transact A Math Phys Eng Sci 2010;368:2065–2081.CrossRef Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Transact A Math Phys Eng Sci 2010;368:2065–2081.CrossRef
30.
Zurück zum Zitat Dormer KJ, Bryce GE, Hough JV. Selection of biomaterials for middle and inner ear implants. Otolaryngol Clin North Am 1995;28:17–27. Dormer KJ, Bryce GE, Hough JV. Selection of biomaterials for middle and inner ear implants. Otolaryngol Clin North Am 1995;28:17–27.
31.
Zurück zum Zitat Szpalski M, Gunzburg R. Applications of calcium phosphate-based cancellous bone void fillers in trauma surgery. Orthopedics 2002;25(5 Suppl):s601–s609. Szpalski M, Gunzburg R. Applications of calcium phosphate-based cancellous bone void fillers in trauma surgery. Orthopedics 2002;25(5 Suppl):s601–s609.
32.
Zurück zum Zitat Hench LL, Wilson J. Surface-active biomaterials. Science 1984;226:630–636.CrossRef Hench LL, Wilson J. Surface-active biomaterials. Science 1984;226:630–636.CrossRef
33.
Zurück zum Zitat Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;2:117–141.CrossRef Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;2:117–141.CrossRef
34.
35.
Zurück zum Zitat Matsuda T, Davies JE. The in vitro response of osteoblasts to bioactive glass. Biomaterials 1987;8:275–284.CrossRef Matsuda T, Davies JE. The in vitro response of osteoblasts to bioactive glass. Biomaterials 1987;8:275–284.CrossRef
36.
Zurück zum Zitat Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999;20:2287–2303.CrossRef Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999;20:2287–2303.CrossRef
37.
Zurück zum Zitat Xynos D, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001;55:151–157.CrossRef Xynos D, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001;55:151–157.CrossRef
38.
Zurück zum Zitat Ramshaw JA, Peng YY, Glattauer V, Werkmeister JA. Collagens as biomaterials. J Mater Sci Mater Med 2009;20(Suppl 1):S3–S8.CrossRef Ramshaw JA, Peng YY, Glattauer V, Werkmeister JA. Collagens as biomaterials. J Mater Sci Mater Med 2009;20(Suppl 1):S3–S8.CrossRef
39.
Zurück zum Zitat DeLustro F, Dasch J, Keefe J, Ellingsworth L. Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives. Clin Orthop Relat Res 1990;260:263–279. DeLustro F, Dasch J, Keefe J, Ellingsworth L. Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives. Clin Orthop Relat Res 1990;260:263–279.
40.
Zurück zum Zitat Behravesh E, Yasko AW, Engel PS, Mikos AG. Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop Relat Res 1999;367 (Suppl):S118–S129.CrossRef Behravesh E, Yasko AW, Engel PS, Mikos AG. Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop Relat Res 1999;367 (Suppl):S118–S129.CrossRef
41.
Zurück zum Zitat Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004;32:477–486.CrossRef Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004;32:477–486.CrossRef
42.
Zurück zum Zitat Karp JM, Shoichet MS, Davies JE. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res A 2003;64:388–396.CrossRef Karp JM, Shoichet MS, Davies JE. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res A 2003;64:388–396.CrossRef
43.
Zurück zum Zitat Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 2001;7:23–33.CrossRef Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 2001;7:23–33.CrossRef
44.
Zurück zum Zitat Whitesides GM, Boncheva M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 2002;99:4769–4774.CrossRef Whitesides GM, Boncheva M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 2002;99:4769–4774.CrossRef
45.
Zurück zum Zitat Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002;295:2418–2421.CrossRef Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002;295:2418–2421.CrossRef
46.
Zurück zum Zitat Seipke G, Arfmann HA, Wagner KG. Synthesis and properties of alternating poly(Lys-Phe) and comparison with the random copolymer poly(Lys 51, Phe 49). Biopolymers 1974;13:1621–1633.CrossRef Seipke G, Arfmann HA, Wagner KG. Synthesis and properties of alternating poly(Lys-Phe) and comparison with the random copolymer poly(Lys 51, Phe 49). Biopolymers 1974;13:1621–1633.CrossRef
47.
Zurück zum Zitat Brack A, Orgel LE. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature 1975;256:383–387.CrossRef Brack A, Orgel LE. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature 1975;256:383–387.CrossRef
48.
Zurück zum Zitat Semino CE. Self-assembling peptides: from bio-inspired materials to bone regeneration. J Dent Res 2008;87:606–616.CrossRef Semino CE. Self-assembling peptides: from bio-inspired materials to bone regeneration. J Dent Res 2008;87:606–616.CrossRef
49.
Zurück zum Zitat Caplan MR, Schwartzfarb EM, Zhang S, Kamm RD, Lauffenburger DA. Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials 2002;23:219–227.CrossRef Caplan MR, Schwartzfarb EM, Zhang S, Kamm RD, Lauffenburger DA. Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials 2002;23:219–227.CrossRef
50.
Zurück zum Zitat Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 1993;90:3334–3338.CrossRef Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 1993;90:3334–3338.CrossRef
51.
Zurück zum Zitat Zhao X, Zhang S. Fabrication of molecular materials using peptide construction motifs. Trends Biotechnol 2004;22:470–476.CrossRef Zhao X, Zhang S. Fabrication of molecular materials using peptide construction motifs. Trends Biotechnol 2004;22:470–476.CrossRef
52.
Zurück zum Zitat Hamada K, Hirose M, Yamashita T, Ohgushi H. Spatial distribution of mineralized bone matrix produced by marrow mesenchymal stem cells in self-assembling peptide hydrogel scaffold. J Biomed Mater Res A 2008;84:128–136. Hamada K, Hirose M, Yamashita T, Ohgushi H. Spatial distribution of mineralized bone matrix produced by marrow mesenchymal stem cells in self-assembling peptide hydrogel scaffold. J Biomed Mater Res A 2008;84:128–136.
53.
Zurück zum Zitat Misawa H, Kobayashi N, Soto-Gutierrez A, Chen Y, Yoshida A, Rivas-Carrillo JD, Navarro-Alvarez N, Tanaka K, Miki A, Takei J, Ueda T, Tanaka M, Endo H, Tanaka N, Ozaki T. PuraMatrix facilitates bone regeneration in bone defects of calvaria in mice. Cell Transplant 2006;15:903–910.CrossRef Misawa H, Kobayashi N, Soto-Gutierrez A, Chen Y, Yoshida A, Rivas-Carrillo JD, Navarro-Alvarez N, Tanaka K, Miki A, Takei J, Ueda T, Tanaka M, Endo H, Tanaka N, Ozaki T. PuraMatrix facilitates bone regeneration in bone defects of calvaria in mice. Cell Transplant 2006;15:903–910.CrossRef
54.
Zurück zum Zitat Horii A, Wang X, Gelain F, Zhang S. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2007;2:e190.CrossRef Horii A, Wang X, Gelain F, Zhang S. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2007;2:e190.CrossRef
55.
Zurück zum Zitat Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294:1684–1688.CrossRef Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294:1684–1688.CrossRef
56.
Zurück zum Zitat Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 2002;99:5133–5138.CrossRef Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 2002;99:5133–5138.CrossRef
57.
Zurück zum Zitat Mata A, Geng Y, Henrikson KJ, Aparicio C, Stock SR, Satcher RL, Stupp SI. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 2010;31:6004–6012.CrossRef Mata A, Geng Y, Henrikson KJ, Aparicio C, Stock SR, Satcher RL, Stupp SI. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 2010;31:6004–6012.CrossRef
58.
Zurück zum Zitat Chun AL, Moralez JG, Webster TJ, Fenniri H. Helical rosette nanotubes: a biomimetic coating for orthopedics. Biomaterials 2005;26:7304–7309.CrossRef Chun AL, Moralez JG, Webster TJ, Fenniri H. Helical rosette nanotubes: a biomimetic coating for orthopedics. Biomaterials 2005;26:7304–7309.CrossRef
59.
Zurück zum Zitat Fenniri H, Mathivanan P, Vidale KL, Sherman DM, Hallenga K, Wood KV, Stowell JG. Helical rosette nanotubes: design, self-assembly and characterization. J Am Chem Soc 2001;123:3854–3855.CrossRef Fenniri H, Mathivanan P, Vidale KL, Sherman DM, Hallenga K, Wood KV, Stowell JG. Helical rosette nanotubes: design, self-assembly and characterization. J Am Chem Soc 2001;123:3854–3855.CrossRef
60.
Zurück zum Zitat Zhang L, Chen Y, Rodriguez J, Fenniri H, Webster TJ. Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int J Nanomedicine 2008;3:323–333 Zhang L, Chen Y, Rodriguez J, Fenniri H, Webster TJ. Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int J Nanomedicine 2008;3:323–333
61.
Zurück zum Zitat Zhang L, Ramsaywack S, Fenniri H,Webster TJ. Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds. Tissue Eng 2008;14:1353–1364.CrossRef Zhang L, Ramsaywack S, Fenniri H,Webster TJ. Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds. Tissue Eng 2008;14:1353–1364.CrossRef
62.
Zurück zum Zitat Zhang L, Rakotondradany F, Myles AJ, Fenniri H, Webster TJ. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering. Biomaterials 2009;30:1309–1320.CrossRef Zhang L, Rakotondradany F, Myles AJ, Fenniri H, Webster TJ. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering. Biomaterials 2009;30:1309–1320.CrossRef
63.
Zurück zum Zitat Rogel MR, Qiu H, Ameer GA. The role of nanocomposites in bone regeneration. J Mater Chem 2008;18:4233–4241.CrossRef Rogel MR, Qiu H, Ameer GA. The role of nanocomposites in bone regeneration. J Mater Chem 2008;18:4233–4241.CrossRef
64.
Zurück zum Zitat Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 2006;11:43–56. Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 2006;11:43–56.
65.
Zurück zum Zitat Du C, Cui FZ, Zhu XD, de Groot K. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 1999;44:407–415.CrossRef Du C, Cui FZ, Zhu XD, de Groot K. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 1999;44:407–415.CrossRef
66.
Zurück zum Zitat Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 2008;19:2039–2046.CrossRef Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 2008;19:2039–2046.CrossRef
67.
Zurück zum Zitat Liao SS, Cui FZ, Zhang W, Feng QL. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater 2004;69:158–165.CrossRef Liao SS, Cui FZ, Zhang W, Feng QL. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater 2004;69:158–165.CrossRef
68.
Zurück zum Zitat Venugopal J, Low S, Choon AT, Kumar AB, Ramakrishna S. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. J Biomed Mater Res A 2008;85:408–417. Venugopal J, Low S, Choon AT, Kumar AB, Ramakrishna S. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. J Biomed Mater Res A 2008;85:408–417.
69.
Zurück zum Zitat Li S, Vert M. Biodegradable polymers: polyesters. In: Mathiowitz E, editor. Encyclopedia of Controlled Drug Delivery. Wiley & Sons: New York, NY, 1999. p. 71–93. Li S, Vert M. Biodegradable polymers: polyesters. In: Mathiowitz E, editor. Encyclopedia of Controlled Drug Delivery. Wiley & Sons: New York, NY, 1999. p. 71–93.
70.
Zurück zum Zitat Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 2008;29:2348–2358.CrossRef Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 2008;29:2348–2358.CrossRef
71.
Zurück zum Zitat Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 2002;3:1233–1239.CrossRef Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 2002;3:1233–1239.CrossRef
72.
Zurück zum Zitat Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003;24:401–416.CrossRef Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003;24:401–416.CrossRef
73.
Zurück zum Zitat Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH. In vitro degradation of silk fibroin. Biomaterials 2005;26:3385–3393.CrossRef Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH. In vitro degradation of silk fibroin. Biomaterials 2005;26:3385–3393.CrossRef
74.
Zurück zum Zitat Gosline JM, Guerette PA, Ortlepp CS, Savage KN. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 1999;202:3295–3303. Gosline JM, Guerette PA, Ortlepp CS, Savage KN. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 1999;202:3295–3303.
75.
Zurück zum Zitat Li C, Jin HJ, Botsaris GD, Kaplan DL. Silk apatite composites from electrospun fibers. J Mater Res 2005;20:3374–3384CrossRef Li C, Jin HJ, Botsaris GD, Kaplan DL. Silk apatite composites from electrospun fibers. J Mater Res 2005;20:3374–3384CrossRef
76.
Zurück zum Zitat Kim HJ, Kim UJ, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL. Bone tissue engineering with premineralized silk scaffolds. Bone 2008;42:1226–1234.CrossRef Kim HJ, Kim UJ, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL. Bone tissue engineering with premineralized silk scaffolds. Bone 2008;42:1226–1234.CrossRef
77.
Zurück zum Zitat Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects – an update. J Pharm Pharmacol 2001;53:1047–1067.CrossRef Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects – an update. J Pharm Pharmacol 2001;53:1047–1067.CrossRef
78.
Zurück zum Zitat Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008;29:4314–4322.CrossRef Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008;29:4314–4322.CrossRef
79.
Zurück zum Zitat Khan YM, Katti DS, Laurencin CT. Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation. J Biomed Mater Res A 2004;69:728–737.CrossRef Khan YM, Katti DS, Laurencin CT. Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation. J Biomed Mater Res A 2004;69:728–737.CrossRef
80.
Zurück zum Zitat Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A 2003;64:465–474.CrossRef Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A 2003;64:465–474.CrossRef
81.
Zurück zum Zitat Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000;21:1803–1810.CrossRef Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000;21:1803–1810.CrossRef
82.
Zurück zum Zitat Webster TJ, Ahn ES. Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol 2007;103:275–308. Webster TJ, Ahn ES. Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol 2007;103:275–308.
83.
Zurück zum Zitat Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004;25:4749–4757.CrossRef Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004;25:4749–4757.CrossRef
84.
Zurück zum Zitat McManus AJ, Doremus RH, Siegel RW, Bizios R. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. J Biomed Mater Res A 2005;72:98–106.CrossRef McManus AJ, Doremus RH, Siegel RW, Bizios R. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. J Biomed Mater Res A 2005;72:98–106.CrossRef
85.
Zurück zum Zitat Keaveny TM, Hayes WC. Mechanical properties of cortical and trabecular bone. Bone 1993;7:285–344. Keaveny TM, Hayes WC. Mechanical properties of cortical and trabecular bone. Bone 1993;7:285–344.
86.
Zurück zum Zitat Patlolla A, Collins G, Arinzeh TL. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomater 2010;6:90–101.CrossRef Patlolla A, Collins G, Arinzeh TL. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomater 2010;6:90–101.CrossRef
87.
Zurück zum Zitat Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, Chen X, Jing X. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 2005;26:6296–6304.CrossRef Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, Chen X, Jing X. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 2005;26:6296–6304.CrossRef
88.
Zurück zum Zitat Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 2004;5:1990–1998.CrossRef Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 2004;5:1990–1998.CrossRef
89.
Zurück zum Zitat Mistry AS, Cheng SH, Yeh T, Christenson E, Jansen JA, Mikos AG. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res A 2009;89:68–79. Mistry AS, Cheng SH, Yeh T, Christenson E, Jansen JA, Mikos AG. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res A 2009;89:68–79.
90.
Zurück zum Zitat He S, Timmer MD, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. Synthesis of biodegradable poly(propylene fumarate) networks with poly(propylene fumarate) – diacrylate macromers as crosslinking agents and characterization of their degradation products. Polymer 2001;42:1251–1260.CrossRef He S, Timmer MD, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. Synthesis of biodegradable poly(propylene fumarate) networks with poly(propylene fumarate) – diacrylate macromers as crosslinking agents and characterization of their degradation products. Polymer 2001;42:1251–1260.CrossRef
91.
Zurück zum Zitat Mistry AS, Pham QP, Schouten C, Yeh T, Christenson EM, Mikos AG, Jansen JA. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering. J Biomed Mater Res A 2010;92:451–462. Mistry AS, Pham QP, Schouten C, Yeh T, Christenson EM, Mikos AG, Jansen JA. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering. J Biomed Mater Res A 2010;92:451–462.
92.
Zurück zum Zitat Shi X, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, Wilson LJ, Mikos AG. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 2007;28:4078–4090.CrossRef Shi X, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, Wilson LJ, Mikos AG. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 2007;28:4078–4090.CrossRef
93.
Zurück zum Zitat Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release 2009;134:26–34.CrossRef Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release 2009;134:26–34.CrossRef
94.
Zurück zum Zitat Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS, Weiss D, Robert Taylor W, Guldberg RE. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 2010;298:H1959–H1965.CrossRef Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS, Weiss D, Robert Taylor W, Guldberg RE. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 2010;298:H1959–H1965.CrossRef
95.
Zurück zum Zitat Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 2010;31:4113–4120.CrossRef Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 2010;31:4113–4120.CrossRef
96.
Zurück zum Zitat Leslie-Barbick JE, Moon JJ, West JL. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 2009;20:1763–1779.CrossRef Leslie-Barbick JE, Moon JJ, West JL. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 2009;20:1763–1779.CrossRef
97.
Zurück zum Zitat Sefcik LS, Petrie Aronin CE, Wieghaus KA, Botchwey EA. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials 2008;29:2869–2877.CrossRef Sefcik LS, Petrie Aronin CE, Wieghaus KA, Botchwey EA. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials 2008;29:2869–2877.CrossRef
Metadaten
Titel
Materials for Bone Graft Substitutes and Osseous Tissue Regeneration
verfasst von
Steven B. Nicoll
Copyright-Jahr
2011
Verlag
Springer Vienna
DOI
https://doi.org/10.1007/978-3-7091-0385-2_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.