Skip to main content

2020 | OriginalPaper | Buchkapitel

4. Materials Selection and Design Considerations

verfasst von : Dr. Dipen Kumar Rajak, Prof. Manoj Gupta

Erschienen in: An Insight Into Metal Based Foams

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes material selection in relation to design considerations using open literature resources. The mechanical, thermal, and electrical properties underlined by fundamental knowledge of design analysis for materials selection is succinctly described. More specifically, the elastic deformation and constitutive equations for failure, buckling, and torsion phenomena are presented. Failure mechanism of dense and metallic foams is explained in relation to materials and design prospective. The chapter also focusses on procedure, function, objectives, constraints, free variable along with single optimization methods, and significance of materials. Additionally, the chapter also addresses the indices for metal foam design of simple structures and constitutive equations for the same are highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Banhart, J., & Weaire, D. (2002). On the road again: Metal foams find favor. Physics Today, 55(7), 37–42.CrossRef Banhart, J., & Weaire, D. (2002). On the road again: Metal foams find favor. Physics Today, 55(7), 37–42.CrossRef
2.
Zurück zum Zitat Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2017). Technical overview of aluminium alloy foam. Reviews on Advanced Materials Science., 48, 68–86. Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2017). Technical overview of aluminium alloy foam. Reviews on Advanced Materials Science., 48, 68–86.
3.
Zurück zum Zitat Sosnick, B. (1943). Process for making foamlike mass of metal. US Patent 2,434,775. Sosnick, B. (1943). Process for making foamlike mass of metal. US Patent 2,434,775.
4.
Zurück zum Zitat Banhart, J. (2006). Metal foams: Production and stability. Advanced Engineering Materials, 8(9), 781–794.CrossRef Banhart, J. (2006). Metal foams: Production and stability. Advanced Engineering Materials, 8(9), 781–794.CrossRef
5.
Zurück zum Zitat Davies, G. J., & Zhen, S. (1983). Metallic foams: Their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.CrossRef Davies, G. J., & Zhen, S. (1983). Metallic foams: Their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.CrossRef
6.
Zurück zum Zitat Ashby, M. F. (Ed.). (2000). Metal foams: A design guide. Butterworth-Heinemann. Ashby, M. F. (Ed.). (2000). Metal foams: A design guide. Butterworth-Heinemann.
7.
Zurück zum Zitat Baumeister, J., Banhart, J., & Weber, M. (1997). Aluminium foams for transport industry. Materials & Design, 18(4–6), 217–220.CrossRef Baumeister, J., Banhart, J., & Weber, M. (1997). Aluminium foams for transport industry. Materials & Design, 18(4–6), 217–220.CrossRef
8.
Zurück zum Zitat Degischer, H.-P., & Kriszt, B. (2003). Handbook of cellular metals: Production, processing, applications. Wiley-InterScience. Degischer, H.-P., & Kriszt, B. (2003). Handbook of cellular metals: Production, processing, applications. Wiley-InterScience.
9.
Zurück zum Zitat Wang, Y., Liew, J. Y. R., Lee, S. C., Zhai, X., & Wang, W. (2017). Crushing of a novel energy absorption connector with curved plate and aluminum foam as energy absorber. Thin-Walled Structures, 111, 145–154.CrossRef Wang, Y., Liew, J. Y. R., Lee, S. C., Zhai, X., & Wang, W. (2017). Crushing of a novel energy absorption connector with curved plate and aluminum foam as energy absorber. Thin-Walled Structures, 111, 145–154.CrossRef
10.
Zurück zum Zitat García-Moreno, F. (2016). Commercial applications of metal foams: Their properties and production. Materials, 9(2), 85. García-Moreno, F. (2016). Commercial applications of metal foams: Their properties and production. Materials, 9(2), 85.
11.
Zurück zum Zitat Das, S., & Prasad, B. K. (2012). Al and Mg based lightweight metallic material for automobile applications. Invertis Journal of Science and Technology, 5(3), 147–156. Das, S., & Prasad, B. K. (2012). Al and Mg based lightweight metallic material for automobile applications. Invertis Journal of Science and Technology, 5(3), 147–156.
12.
Zurück zum Zitat Banhart, J. (2005). Aluminium foams for lighter vehicles. International Journal of Vehicle Design, 37(2/3), 114.CrossRef Banhart, J. (2005). Aluminium foams for lighter vehicles. International Journal of Vehicle Design, 37(2/3), 114.CrossRef
13.
Zurück zum Zitat Banhart, J. (2000). Manufacturing routes for metallic foams. JOM Journal of the Minerals Metals and Materials Society, 52(12), 22–27.CrossRef Banhart, J. (2000). Manufacturing routes for metallic foams. JOM Journal of the Minerals Metals and Materials Society, 52(12), 22–27.CrossRef
14.
Zurück zum Zitat Davis, J. R. (Ed.). (1999). Corrosion of aluminum and aluminum alloys. ASM International. Davis, J. R. (Ed.). (1999). Corrosion of aluminum and aluminum alloys. ASM International.
15.
Zurück zum Zitat Luo, Y., Yu, S., Liu, J., Zhu, X., & Luo, Y. (2010). Compressive property and energy absorption characteristic of open-cell SiCp/AlSi9Mg composite foams. Journal of Alloys and Compounds, 499(2), 227–230.CrossRef Luo, Y., Yu, S., Liu, J., Zhu, X., & Luo, Y. (2010). Compressive property and energy absorption characteristic of open-cell SiCp/AlSi9Mg composite foams. Journal of Alloys and Compounds, 499(2), 227–230.CrossRef
16.
Zurück zum Zitat Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2014). An energy absorption behaviour of foam filled structures. Procedia Materials Science, 5, 164–172.CrossRef Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2014). An energy absorption behaviour of foam filled structures. Procedia Materials Science, 5, 164–172.CrossRef
17.
Zurück zum Zitat Rajak, D. K., Kumaraswamidhas, A., & L., & Das, S. . (2015). Energy absorption capabilities of aluminium foam-filled square. Advanced Materials Letters, 6(1), 80–85.CrossRef Rajak, D. K., Kumaraswamidhas, A., & L., & Das, S. . (2015). Energy absorption capabilities of aluminium foam-filled square. Advanced Materials Letters, 6(1), 80–85.CrossRef
18.
Zurück zum Zitat Edvige, C., Alexander, N. C. (2019). Handbook of Graphene, volume 1: Growth, synthesis, and functionalization. Wiley. ISBN: 978-1-119-46861-5. Edvige, C., Alexander, N. C. (2019). Handbook of Graphene, volume 1: Growth, synthesis, and functionalization. Wiley. ISBN: 978-1-119-46861-5.
19.
Zurück zum Zitat Heydari, A. A., Shahverdi, H. R., & Elahi, S. H. (2015). Compressive behavior of Zn–22Al closed-cell foams under uniaxial quasi-static loading. Transactions of Nonferrous Metals Society of China, 25(1), 162–169.CrossRef Heydari, A. A., Shahverdi, H. R., & Elahi, S. H. (2015). Compressive behavior of Zn–22Al closed-cell foams under uniaxial quasi-static loading. Transactions of Nonferrous Metals Society of China, 25(1), 162–169.CrossRef
20.
Zurück zum Zitat Ruan, D., Lu, G., Chen, F. L., & Siores, E. (2002). Compressive behaviour of aluminium foams at low and medium strain rates. Composite Structures, 57(1–4), 331–336.CrossRef Ruan, D., Lu, G., Chen, F. L., & Siores, E. (2002). Compressive behaviour of aluminium foams at low and medium strain rates. Composite Structures, 57(1–4), 331–336.CrossRef
21.
Zurück zum Zitat Paul, A., & Ramamurty, U. (2000). Strain rate sensitivity of a closed-cell aluminum foam. Materials Science and Engineering: A, 281(1–2), 1–7. Paul, A., & Ramamurty, U. (2000). Strain rate sensitivity of a closed-cell aluminum foam. Materials Science and Engineering: A, 281(1–2), 1–7.
22.
Zurück zum Zitat Patel, A., Das, S., & Prasad, B. K. (2011). Compressive deformation behaviour of Al alloy (2014)–10wt.% SiCp composite: Effects of strain rates and temperatures. Materials Science and Engineering: A, 530, 225–232.CrossRef Patel, A., Das, S., & Prasad, B. K. (2011). Compressive deformation behaviour of Al alloy (2014)–10wt.% SiCp composite: Effects of strain rates and temperatures. Materials Science and Engineering: A, 530, 225–232.CrossRef
23.
Zurück zum Zitat Hall, I. W., Guden, M., & Yu, C.-J. (2000). Crushing of aluminum closed cell foams: Density and strain rate effects. Scripta Materialia, 43(6), 515–521.CrossRef Hall, I. W., Guden, M., & Yu, C.-J. (2000). Crushing of aluminum closed cell foams: Density and strain rate effects. Scripta Materialia, 43(6), 515–521.CrossRef
24.
Zurück zum Zitat Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: Structure and properties (2nd ed.). Cambridge University Press. Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: Structure and properties (2nd ed.). Cambridge University Press.
25.
Zurück zum Zitat Park, C., & Nutt, S. R. (2000). PM synthesis and properties of steel foams. Materials Science and Engineering: A, 288(1), 111–118.CrossRef Park, C., & Nutt, S. R. (2000). PM synthesis and properties of steel foams. Materials Science and Engineering: A, 288(1), 111–118.CrossRef
26.
Zurück zum Zitat Aly, M. S. (2007). Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimental results. Materials Letters, 61(14–15), 3138–3141.CrossRef Aly, M. S. (2007). Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimental results. Materials Letters, 61(14–15), 3138–3141.CrossRef
27.
Zurück zum Zitat Dilley, D. C. (1974). Mechanical and Production Engineering, 125, 24. Dilley, D. C. (1974). Mechanical and Production Engineering, 125, 24.
28.
Zurück zum Zitat Zhou, J., Gao, Z., Cuitino, A., & Soboyejo, W. (2004). Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams. Materials Science and Engineering a, 386(1–2), 118–128.CrossRef Zhou, J., Gao, Z., Cuitino, A., & Soboyejo, W. (2004). Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams. Materials Science and Engineering a, 386(1–2), 118–128.CrossRef
29.
Zurück zum Zitat Wang, Z., Li, Z., Ning, J., & Zhao, L. (2009). Effect of heat treatments on the crushing behaviour and energy absorbing performance of aluminium alloy foams. Materials & Design, 30(4), 977–982.CrossRef Wang, Z., Li, Z., Ning, J., & Zhao, L. (2009). Effect of heat treatments on the crushing behaviour and energy absorbing performance of aluminium alloy foams. Materials & Design, 30(4), 977–982.CrossRef
30.
Zurück zum Zitat Cheng, H. (2003). Compressive behavior and energy absorbing characteristic of open cell aluminum foam filled with silicate rubber. Scripta Materialia, 49(6), 583–586.CrossRef Cheng, H. (2003). Compressive behavior and energy absorbing characteristic of open cell aluminum foam filled with silicate rubber. Scripta Materialia, 49(6), 583–586.CrossRef
31.
Zurück zum Zitat Orbulov, I. N., & Ginsztler, J. (2012). Compressive characteristics of metal matrix syntactic foams. Composites Part A: Applied Science and Manufacturing, 43(4), 553–561.CrossRef Orbulov, I. N., & Ginsztler, J. (2012). Compressive characteristics of metal matrix syntactic foams. Composites Part A: Applied Science and Manufacturing, 43(4), 553–561.CrossRef
32.
Zurück zum Zitat Harte, A.-M., Fleck, N. A., & Ashby, M. F. (2000). Energy absorption of foam-filled circular tubes with braided composite walls. European Journal of Mechanics—A/Solids, 19(1), 31–50.CrossRef Harte, A.-M., Fleck, N. A., & Ashby, M. F. (2000). Energy absorption of foam-filled circular tubes with braided composite walls. European Journal of Mechanics—A/Solids, 19(1), 31–50.CrossRef
33.
Zurück zum Zitat Chino, Y., Mabuchi, M., Yamada, Y., Hagiwara, S., & Iwasaki, H. (2003). An experimental investigation of effects of specimen size parameters on compressive and tensile properties in a closed cell al foam. Materials Transactions, 44(4), 633–636.CrossRef Chino, Y., Mabuchi, M., Yamada, Y., Hagiwara, S., & Iwasaki, H. (2003). An experimental investigation of effects of specimen size parameters on compressive and tensile properties in a closed cell al foam. Materials Transactions, 44(4), 633–636.CrossRef
34.
Zurück zum Zitat Caner, F. C., & Bažant, Z. P. (2009). Size effect on strength of laminate-foam sandwich plates: Finite element analysis with interface fracture. Composites Part B: Engineering, 40(5), 337–348.CrossRef Caner, F. C., & Bažant, Z. P. (2009). Size effect on strength of laminate-foam sandwich plates: Finite element analysis with interface fracture. Composites Part B: Engineering, 40(5), 337–348.CrossRef
35.
Zurück zum Zitat Han, F., Cheng, H., Wang, J., & Wang, Q. (2004). Effect of pore combination on the mechanical properties of an open cell aluminum foam. Scripta Materialia, 50(1), 13–17.CrossRef Han, F., Cheng, H., Wang, J., & Wang, Q. (2004). Effect of pore combination on the mechanical properties of an open cell aluminum foam. Scripta Materialia, 50(1), 13–17.CrossRef
36.
Zurück zum Zitat Jiang, B., Wang, Z., & Zhao, N. (2007). Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scripta Materialia, 56(2), 169–172.CrossRef Jiang, B., Wang, Z., & Zhao, N. (2007). Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scripta Materialia, 56(2), 169–172.CrossRef
37.
Zurück zum Zitat Chen, S., Marx, J., & Rabiei, A. (2016). Experimental and computational studies on the thermal behavior and fire retardant properties of composite metal foams. International Journal of Thermal Sciences, 106, 70–79.CrossRef Chen, S., Marx, J., & Rabiei, A. (2016). Experimental and computational studies on the thermal behavior and fire retardant properties of composite metal foams. International Journal of Thermal Sciences, 106, 70–79.CrossRef
38.
Zurück zum Zitat Ashby, M. F., Brechet, Y. J. M., Cebon, D., & Salvo, L. (2004). Selection strategies for materials and processes. Materials & Design, 25(1), 51–67.CrossRef Ashby, M. F., Brechet, Y. J. M., Cebon, D., & Salvo, L. (2004). Selection strategies for materials and processes. Materials & Design, 25(1), 51–67.CrossRef
39.
Zurück zum Zitat Shanley, F. R. (1960). Weight-strength analysis of aircraft structures. New York: Dover Publications. Shanley, F. R. (1960). Weight-strength analysis of aircraft structures. New York: Dover Publications.
40.
Zurück zum Zitat Gordon, J. E. (1978). Structures, or why things don’t fall through the floor. Harmondsworth: Penguin Books.CrossRef Gordon, J. E. (1978). Structures, or why things don’t fall through the floor. Harmondsworth: Penguin Books.CrossRef
41.
Zurück zum Zitat Siddall, J. N. (1982). Optimal engineering design: Principles and applications. M. Dekker. Siddall, J. N. (1982). Optimal engineering design: Principles and applications. M. Dekker.
42.
Zurück zum Zitat Johnson, R. C. (1962). Optimum design of mechanical elements. XIV + 535 S. New York/London 1961. Wiley. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 42(10–11), 514–514. Johnson, R. C. (1962). Optimum design of mechanical elements. XIV + 535 S. New York/London 1961. Wiley. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 42(10–11), 514–514.
43.
Zurück zum Zitat Ashby, M. F. (1999). Materials selection in mechanical design (2nd ed). Butterworth-Heinemann. Ashby, M. F. (1999). Materials selection in mechanical design (2nd ed). Butterworth-Heinemann.
44.
Zurück zum Zitat Budinski, K. G., & Budinski, M. K. (1999). Engineering materials: Properties and selection (6th ed). Prentice Hall. Budinski, K. G., & Budinski, M. K. (1999). Engineering materials: Properties and selection (6th ed). Prentice Hall.
46.
Zurück zum Zitat Ashby, M. F., & Cebon, D. (1999). Case studies in materials selection. Cambridge, UK: Butterworth-Heinemann. Ashby, M. F., & Cebon, D. (1999). Case studies in materials selection. Cambridge, UK: Butterworth-Heinemann.
47.
Zurück zum Zitat Farag, M. M. (1989). Materials selection for engineering design. Prentice Hall. Farag, M. M. (1989). Materials selection for engineering design. Prentice Hall.
48.
Zurück zum Zitat Ashby, M. F., & Johnson, K. (2014). Materials and design: The art and science of material selection in product design (3rd ed.). Butterworth-Heinemann. Ashby, M. F., & Johnson, K. (2014). Materials and design: The art and science of material selection in product design (3rd ed.). Butterworth-Heinemann.
49.
Zurück zum Zitat Lewis, G. (1990). Selection of engineering materials. Englewood Cliffs, NJ, USA: Prentice-Hall. Lewis, G. (1990). Selection of engineering materials. Englewood Cliffs, NJ, USA: Prentice-Hall.
50.
Zurück zum Zitat Dieter, G. E. (1983). Engineering design: A materials and processing approach. McGraw-Hill. Dieter, G. E. (1983). Engineering design: A materials and processing approach. McGraw-Hill.
51.
Zurück zum Zitat Dieter, G. E. (Ed.). (1997). Materials selection and design (10th ed). ASM International. Dieter, G. E. (Ed.). (1997). Materials selection and design (10th ed). ASM International.
52.
Zurück zum Zitat Ullman, D. G. (2003). The mechanical design process (3rd ed). McGraw-Hill. Ullman, D. G. (2003). The mechanical design process (3rd ed). McGraw-Hill.
53.
Zurück zum Zitat Timosenko, S. P. (1979). Elements of strength of materials. Van Nostrand Reinhold. Timosenko, S. P. (1979). Elements of strength of materials. Van Nostrand Reinhold.
54.
Zurück zum Zitat Beer, F. P. (2015). Mechanics of materials (7th ed). McGraw-Hill Education. Beer, F. P. (2015). Mechanics of materials (7th ed). McGraw-Hill Education.
55.
Zurück zum Zitat Hibbeler, R. C. (2017). Mechanics of materials (10th ed). Pearson. Hibbeler, R. C. (2017). Mechanics of materials (10th ed). Pearson.
56.
Zurück zum Zitat Nash, W. A. (2014). Schaum’s outlines: Strength of materials (6th ed). McGraw Hill Education. Nash, W. A. (2014). Schaum’s outlines: Strength of materials (6th ed). McGraw Hill Education.
57.
Zurück zum Zitat Den Hartog, J. P. (2012). Advanced strength of materials. Den Hartog, J. P. (2012). Advanced strength of materials.
58.
Zurück zum Zitat Gere, J. M., & Timosenko, S. P. (1985). Mechanics of materials. London: Wadsworth International. Gere, J. M., & Timosenko, S. P. (1985). Mechanics of materials. London: Wadsworth International.
59.
Zurück zum Zitat Timosenko, S. P., & Gere, J. M. (1961). Theory of elastic stability. London: McGraw-Hill Koga Kusha Ltd. Timosenko, S. P., & Gere, J. M. (1961). Theory of elastic stability. London: McGraw-Hill Koga Kusha Ltd.
60.
Zurück zum Zitat Weaver, P. M., & Ashby, M. F. (1996). The optimal selection of material and section-shape. Journal of Engineering Design, 7(2), 129–150.CrossRef Weaver, P. M., & Ashby, M. F. (1996). The optimal selection of material and section-shape. Journal of Engineering Design, 7(2), 129–150.CrossRef
Metadaten
Titel
Materials Selection and Design Considerations
verfasst von
Dr. Dipen Kumar Rajak
Prof. Manoj Gupta
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9069-6_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.