Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.08.2015 | Original Paper | Ausgabe 3/2016

Rock Mechanics and Rock Engineering 3/2016

‘Mathematical’ Cracks Versus Artificial Slits: Implications in the Determination of Fracture Toughness

Zeitschrift:
Rock Mechanics and Rock Engineering > Ausgabe 3/2016
Autoren:
Ch. F. Markides, S. K. Kourkoulis

Abstract

An analytic solution is introduced for the stress field developed in a circular finite disc weakened by a central slit of arbitrary ratio of its edges and slightly rounded corners. The disc is loaded by radial pressure applied along two finite arcs of its periphery, anti-symmetric with respect to the disc’s center. The motive of the study is to consider the stress field in a disc with a mechanically machined slit (finite distance between the two lips) in juxtaposition to the respective field in the same disc with a ‘mathematical’ crack (zero distance between lips), which is the configuration adopted in case the fracture toughness of brittle materials is determined according to the standardized cracked Brazilian-disc test. The solution is obtained using Muskhelishvili’s complex potentials’ technique adopting a suitable conformal mapping function found, also, in Savin’s milestone book. For the task to be accomplished, an auxiliary problem is first solved, namely, the infinite plate with a rectangular slit (in case the resultant force on the slit is zero and also the stresses and rotations at infinity are zero), by mapping conformally the area outside the slit onto the mathematical plane with a unit hole. The formulae obtained for the complex potentials permit the analytic exploration of the stress field along some loci of crucial practical importance. The influence of the slit’s width on the local stress amplification and also on the stress concentration around the crown of the slit is quantitatively described. In addition, the role of the load-application mode (compression along the slit’s longitudinal symmetry axis and tension normal to it) is explored. Results indicate that the two configurations are not equivalent in terms of the stress concentration factor. In addition, depending on the combination of the slit’s width and the load-application mode, the point where the normal stress along the slit’s boundary is maximized ‘oscillates’ between the central point of the slit’s short edge (intersection of the slit’s longitudinal axis with its perimeter) and the slit’s corners.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2016

Rock Mechanics and Rock Engineering 3/2016 Zur Ausgabe