Skip to main content

2020 | OriginalPaper | Buchkapitel

3. Mathematical Model

verfasst von : Vladimir Danilov, Roman Gaydukov, Vadim Kretov

Erschienen in: Mathematical Modeling of Emission in Small-Size Cathode

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is a “mathematical” one. Here we collect the mathematical background related to the mathematical model of phase transition based on the phase field system introduced by G. Caginalp. Sections 3.1 and 3.2 of the chapter contain some preliminaries and considerations about mathematical models from the physical viewpoint. In Sect. 3.3, we give the results of asymptotic analysis applied to the phase field system. In Sect. 3.4, we discuss a new definition of the generalized solution to the phase field system which is stable under passing to the limiting Stefan–Gibbs–Thomson problem. Finally, in Sect. 3.5, we discuss an approach which is a combination of mathematical (asymptotic) investigation and numerical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For the rigorous asymptotic analysis of the phase field system, see in the next sections.
 
2
For more details about the problems considered here and references to the literature, see [19].
 
Literatur
1.
Zurück zum Zitat Ablowitz, M.J., Zeppetella, A.: Explicit solutions of fisher’s equation for a special wave speed. Bull. Math. Biol. 41(6), 835–840 (1979)MathSciNetMATHCrossRef Ablowitz, M.J., Zeppetella, A.: Explicit solutions of fisher’s equation for a special wave speed. Bull. Math. Biol. 41(6), 835–840 (1979)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Alexiades, V.: Mathematical Modeling of Melting and Freezing Processes. CRC Press (1992) Alexiades, V.: Mathematical Modeling of Melting and Freezing Processes. CRC Press (1992)
3.
Zurück zum Zitat Alikakos, N.D., Bates, P.W.: On the singular limit in a phase field model of phase transitions. Annales de l’institut Henri Poincaré (C) Analyse non linéaire 5(2), 141–178 (1988)ADSMathSciNetMATHCrossRef Alikakos, N.D., Bates, P.W.: On the singular limit in a phase field model of phase transitions. Annales de l’institut Henri Poincaré (C) Analyse non linéaire 5(2), 141–178 (1988)ADSMathSciNetMATHCrossRef
4.
Zurück zum Zitat Bossavit, A., Damlamian, A., Fremond, M. (Eds.): Free Boundary Problems: Applications and Theory. Pitman (1985) Bossavit, A., Damlamian, A., Fremond, M. (Eds.): Free Boundary Problems: Applications and Theory. Pitman (1985)
5.
Zurück zum Zitat Caginalp, G.: Surface tension and supercooling in solidification theory. In: Garrido, L. (ed.) Applications of Field Theory to Statistical Mechanics. Lecture Notes in Physics, vol. 216, pp. 216–226. Springer, Berlin, Heidelberg (1985)CrossRef Caginalp, G.: Surface tension and supercooling in solidification theory. In: Garrido, L. (ed.) Applications of Field Theory to Statistical Mechanics. Lecture Notes in Physics, vol. 216, pp. 216–226. Springer, Berlin, Heidelberg (1985)CrossRef
6.
7.
8.
9.
Zurück zum Zitat Caginalp, G., Chadam, J.: Stability of interfaces with velocity correction term. Rocky Mount. J. Math. 21(2), 617–629 (1991)MathSciNetMATHCrossRef Caginalp, G., Chadam, J.: Stability of interfaces with velocity correction term. Rocky Mount. J. Math. 21(2), 617–629 (1991)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Eur. J. Appl. Math. 9(4), 417–445 (1998)MathSciNetMATHCrossRef Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Eur. J. Appl. Math. 9(4), 417–445 (1998)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Caginalp, G., Fife, P.C.: Elliptic problems involving phase boundaries satisfying a curvature condition. IMA J. Appl. Math. 38, 195–217 (1987)MathSciNetMATHCrossRef Caginalp, G., Fife, P.C.: Elliptic problems involving phase boundaries satisfying a curvature condition. IMA J. Appl. Math. 38, 195–217 (1987)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Caginalp, G., McLeod, B.: The interior transition layer for ordinary differential equations arising from solidification theory. Quart. Appl. Math. 44, 155–168 (1986)MathSciNetMATH Caginalp, G., McLeod, B.: The interior transition layer for ordinary differential equations arising from solidification theory. Quart. Appl. Math. 44, 155–168 (1986)MathSciNetMATH
13.
14.
Zurück zum Zitat Chadam, J., Howison, S.D., Ortoleva, P.: Existence and stability for spherical crystals growing in a supersaturated solution. IMA J. Appl. Math. 39(1), 1–15 (1987)MathSciNetMATHCrossRef Chadam, J., Howison, S.D., Ortoleva, P.: Existence and stability for spherical crystals growing in a supersaturated solution. IMA J. Appl. Math. 39(1), 1–15 (1987)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Chalmers, B.: Principles of solidification. Wiley Series on the Science and Technology of Materials (Book 28). Wiley (1964) Chalmers, B.: Principles of solidification. Wiley Series on the Science and Technology of Materials (Book 28). Wiley (1964)
16.
Zurück zum Zitat Chen, X., Reitich, F.: Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling (November 1990). IMA Preprint Series 715 Chen, X., Reitich, F.: Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling (November 1990). IMA Preprint Series 715
17.
Zurück zum Zitat Crowley, A.B., Ockendon, J.R.: Modelling mushy regions. Appl. Sci. Res. 44, 1–7 (1987)CrossRef Crowley, A.B., Ockendon, J.R.: Modelling mushy regions. Appl. Sci. Res. 44, 1–7 (1987)CrossRef
18.
Zurück zum Zitat Danilov, V.G.: On the relation between the Maslov-Whitham method and the weak asymptotics method. In: Kamiński, A., Oberguggenberger, M., Pilipović, S. (eds.) Linear and Non-Linear Theory of Generalized Functions and its Applications, vol. 88, pp. 55–65. Banach Center Publications, Warsaw (2010)CrossRef Danilov, V.G.: On the relation between the Maslov-Whitham method and the weak asymptotics method. In: Kamiński, A., Oberguggenberger, M., Pilipović, S. (eds.) Linear and Non-Linear Theory of Generalized Functions and its Applications, vol. 88, pp. 55–65. Banach Center Publications, Warsaw (2010)CrossRef
19.
Zurück zum Zitat Danilov, V.G., Maslov, V.P., Volosov, K.A.: Mathematical Modelling of Heat and Mass Transfer Processes. Kluwer Academic Publication (1995) Danilov, V.G., Maslov, V.P., Volosov, K.A.: Mathematical Modelling of Heat and Mass Transfer Processes. Kluwer Academic Publication (1995)
20.
Zurück zum Zitat Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Asymptotic behavior of the solution of a phase field system, and a modified stefan problem. Differ. Equat. 31(3), 446–454 (1995)MathSciNetMATH Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Asymptotic behavior of the solution of a phase field system, and a modified stefan problem. Differ. Equat. 31(3), 446–454 (1995)MathSciNetMATH
21.
Zurück zum Zitat Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Justification of asymptotics of solutions of the phase-field equations and a modified Stefan problem. Sbornik: Math. 186(12), 1753–1771 (1995)ADSMathSciNetMATHCrossRef Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Justification of asymptotics of solutions of the phase-field equations and a modified Stefan problem. Sbornik: Math. 186(12), 1753–1771 (1995)ADSMathSciNetMATHCrossRef
22.
Zurück zum Zitat Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Hugoniot-type conditions and weak solutions to the phase-field system. Eur. J. Appl. Math. 10, 55–77 (1999)MathSciNetMATHCrossRef Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Hugoniot-type conditions and weak solutions to the phase-field system. Eur. J. Appl. Math. 10, 55–77 (1999)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Danilov, V.G., Omel’yanov, G.A., Shelkovich, V.M.: Weak asymptotics method and interaction of nonlinear waves. Am. Math. Soc. Transl. 2, 208, pp. 33–163. Providence: American Mathematical Society (2003) Danilov, V.G., Omel’yanov, G.A., Shelkovich, V.M.: Weak asymptotics method and interaction of nonlinear waves. Am. Math. Soc. Transl. 2, 208, pp. 33–163. Providence: American Mathematical Society (2003)
25.
Zurück zum Zitat Egorov, Y.V.: Linear Differential Equations of Principal Type. Springer (1986) Egorov, Y.V.: Linear Differential Equations of Principal Type. Springer (1986)
26.
Zurück zum Zitat Elliott, C.M., Ockendon, J.R.: Weak and Variational Methods for Free and Moving Boundary Problems. Pitman Publishing, Boston (1982)MATH Elliott, C.M., Ockendon, J.R.: Weak and Variational Methods for Free and Moving Boundary Problems. Pitman Publishing, Boston (1982)MATH
27.
28.
Zurück zum Zitat Fife, P.C., Gill, G.S.: Phase-transition mechanisms for the phase-field model under internal heating. Phys. Rev. A 43(2), 843–851 (1991)ADSMathSciNetCrossRef Fife, P.C., Gill, G.S.: Phase-transition mechanisms for the phase-field model under internal heating. Phys. Rev. A 43(2), 843–851 (1991)ADSMathSciNetCrossRef
29.
Zurück zum Zitat Gelfand, I.M., Shilov, G.E.: Generalized Functions: Properties and Operations. Academic Press (1964) Gelfand, I.M., Shilov, G.E.: Generalized Functions: Properties and Operations. Academic Press (1964)
30.
Zurück zum Zitat Gibbs, J.W.: The Collected Works. Yale University Press, New Haven (1948)MATH Gibbs, J.W.: The Collected Works. Yale University Press, New Haven (1948)MATH
31.
Zurück zum Zitat Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer, NY (1987)MATHCrossRef Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer, NY (1987)MATHCrossRef
32.
Zurück zum Zitat Hoffmann, K.H., Sprekels, J. (Eds.): Free Boundary Problems: Theory and Applications. Longman Scientific and Technical (1990) Hoffmann, K.H., Sprekels, J. (Eds.): Free Boundary Problems: Theory and Applications. Longman Scientific and Technical (1990)
33.
Zurück zum Zitat Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Modern Phys. 49(3), 435–479 (1977)ADSCrossRef Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Modern Phys. 49(3), 435–479 (1977)ADSCrossRef
34.
Zurück zum Zitat Howison, S.D., Lacey, A.A., Ockendon, J.R.: Hele-shaw free-boundary problems with suction. Quar. J. Mech. Appl. Math. 41(2), 183–193 (1988)MathSciNetCrossRef Howison, S.D., Lacey, A.A., Ockendon, J.R.: Hele-shaw free-boundary problems with suction. Quar. J. Mech. Appl. Math. 41(2), 183–193 (1988)MathSciNetCrossRef
35.
Zurück zum Zitat Karma, A., Rappel, W.J.: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53(4), R3017–R3020 (1996)ADSCrossRef Karma, A., Rappel, W.J.: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53(4), R3017–R3020 (1996)ADSCrossRef
36.
Zurück zum Zitat Kawahara, T., Tanaka, M.: Interactions of traveling fronts: An exact solution of a nonlinear diffusion equation. Phys. Lett. A 97(8), 311–314 (1983)ADSMathSciNetCrossRef Kawahara, T., Tanaka, M.: Interactions of traveling fronts: An exact solution of a nonlinear diffusion equation. Phys. Lett. A 97(8), 311–314 (1983)ADSMathSciNetCrossRef
37.
Zurück zum Zitat Kolmogorov, A.N., Petrovskii, N.G., Piskunov, N.S.: A study of the diffusion equation with increase in the quantity of matter, and its application to a biological problem. Bull. Moscow State Univ. Ser. A. Math. Mech. 1(6), 1–16 (1937). (in Russian) Kolmogorov, A.N., Petrovskii, N.G., Piskunov, N.S.: A study of the diffusion equation with increase in the quantity of matter, and its application to a biological problem. Bull. Moscow State Univ. Ser. A. Math. Mech. 1(6), 1–16 (1937). (in Russian)
39.
Zurück zum Zitat Lashin, A.M.: An investigation of the dynamics of first-order phase transition during the directional solidification of a pure metal into an undercooled melt on the base of phase-field model (2001). (in Russian) Lashin, A.M.: An investigation of the dynamics of first-order phase transition during the directional solidification of a pure metal into an undercooled melt on the base of phase-field model (2001). (in Russian)
40.
Zurück zum Zitat Luckhaus, S.: Solutions for the two-phase stefan problem with the Gibbs—Thomson law for the melting temperature. Eur. J. Appl. Math. 1(02), 101–111 (1990)MathSciNetMATHCrossRef Luckhaus, S.: Solutions for the two-phase stefan problem with the Gibbs—Thomson law for the melting temperature. Eur. J. Appl. Math. 1(02), 101–111 (1990)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Luckhaus, S., Modica, L.: The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Ration. Mech. Anal. 107(1), 71–83 (1989)MathSciNetMATHCrossRef Luckhaus, S., Modica, L.: The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Ration. Mech. Anal. 107(1), 71–83 (1989)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Maslov, V.P., Omel’yanov, G.A.: Asymptotic soliton-form solutions of equations with small dispersion. Russian Math. Surv. 36, 73–149 (1981)ADSMATHCrossRef Maslov, V.P., Omel’yanov, G.A.: Asymptotic soliton-form solutions of equations with small dispersion. Russian Math. Surv. 36, 73–149 (1981)ADSMATHCrossRef
43.
Zurück zum Zitat Maslov, V.P., Tsupin, V.A.: Propagation of a shock wave in an isentropic gas with small viscosity. J. Soviet Math. 13, 163–185 (1980)MATHCrossRef Maslov, V.P., Tsupin, V.A.: Propagation of a shock wave in an isentropic gas with small viscosity. J. Soviet Math. 13, 163–185 (1980)MATHCrossRef
44.
Zurück zum Zitat Meirmanov, A.M.: An example of nonexistence of a classical solution of the Stefan problem. Soviet Math. Dokl. 23, 564–566 (1981) Meirmanov, A.M.: An example of nonexistence of a classical solution of the Stefan problem. Soviet Math. Dokl. 23, 564–566 (1981)
45.
Zurück zum Zitat Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)MathSciNetMATHCrossRef Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Oleinik, O.A.: Discontinuous solution of non-linear differential equations. AMS Transl. Ser. 2(26), 95–172 (1963)MathSciNetMATH Oleinik, O.A.: Discontinuous solution of non-linear differential equations. AMS Transl. Ser. 2(26), 95–172 (1963)MathSciNetMATH
47.
Zurück zum Zitat Oleinik, O.A., Radkevich, E.V.: On the analyticity of solutions of linear partial differential equations. Math. USSR—Sbornik 19(4), 581–596 (1973)MATHCrossRef Oleinik, O.A., Radkevich, E.V.: On the analyticity of solutions of linear partial differential equations. Math. USSR—Sbornik 19(4), 581–596 (1973)MATHCrossRef
48.
Zurück zum Zitat Plotnikov, P.I., Starovoitov, V.N.: The Stefan problem with surface tension as a limit of the phase field model. Differ. Equat. 29(3), 395–404 (1993)MathSciNetMATH Plotnikov, P.I., Starovoitov, V.N.: The Stefan problem with surface tension as a limit of the phase field model. Differ. Equat. 29(3), 395–404 (1993)MathSciNetMATH
49.
Zurück zum Zitat Primicerio, M.: Mushy region in phase–change problem. Methoden und Verfahren der mathematischen Physik 25, pp. 251–269. Peter Lang, Frankfurt/Main (1983) Primicerio, M.: Mushy region in phase–change problem. Methoden und Verfahren der mathematischen Physik 25, pp. 251–269. Peter Lang, Frankfurt/Main (1983)
50.
Zurück zum Zitat Radkevich, E.V.: Gibbs-thomson amendment and conditions for the existence of a classical solution of the modified stefan problem. Dokl. Akad. Nauk 316(6), 1311–1315 (1991). (in Russian) Radkevich, E.V.: Gibbs-thomson amendment and conditions for the existence of a classical solution of the modified stefan problem. Dokl. Akad. Nauk 316(6), 1311–1315 (1991). (in Russian)
51.
Zurück zum Zitat Radkevich, E.V.: About asymptotic solution of a phase-field system. Differ. Equat. 29(3), 487–500 (1993) Radkevich, E.V.: About asymptotic solution of a phase-field system. Differ. Equat. 29(3), 487–500 (1993)
52.
Zurück zum Zitat Radkevich, E.V.: On conditions for the existence of a classical solution of the modified Stefan problem (the Gibbs–Thomson law). Russian Academy Sci. Sbornik Mathematics 75, 221–246 (1993)ADSMathSciNetMATHCrossRef Radkevich, E.V.: On conditions for the existence of a classical solution of the modified Stefan problem (the Gibbs–Thomson law). Russian Academy Sci. Sbornik Mathematics 75, 221–246 (1993)ADSMathSciNetMATHCrossRef
53.
54.
Zurück zum Zitat Soner, H.M.: Influence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling. Arch. Ration. Mech. Anal. 131(2), 139–197 (1995)MATHCrossRef Soner, H.M.: Influence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling. Arch. Ration. Mech. Anal. 131(2), 139–197 (1995)MATHCrossRef
55.
Zurück zum Zitat Treves, J.F.: Introduction to Pseudodifferential and Fourier Integral Operators, vol. 1: Pseudodifferential Operators, second printing edn. University Series in Mathematics. Plenum Press, NY (1982) Treves, J.F.: Introduction to Pseudodifferential and Fourier Integral Operators, vol. 1: Pseudodifferential Operators, second printing edn. University Series in Mathematics. Plenum Press, NY (1982)
56.
Zurück zum Zitat Uchiyama, K.: The behavior of solutions of some non-linear diffusion equations for large time. J. Math. Kyoto Univ. 18(3), 453–508 (1978)MathSciNetMATHCrossRef Uchiyama, K.: The behavior of solutions of some non-linear diffusion equations for large time. J. Math. Kyoto Univ. 18(3), 453–508 (1978)MathSciNetMATHCrossRef
57.
Zurück zum Zitat Visintin, A.: Models of Phase Transitions. Birkhäuser (1996) Visintin, A.: Models of Phase Transitions. Birkhäuser (1996)
58.
Metadaten
Titel
Mathematical Model
verfasst von
Vladimir Danilov
Roman Gaydukov
Vadim Kretov
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-0195-1_3