Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

Mathematical Modeling and Numerical Simulation of a Double Touch-Mode Pressure Sensor with Graphene as the Sensing Element

verfasst von : Smiti Tripathy, Shiyona Dash, Sumit Kumar Jindal

Erschienen in: 4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019

Verlag: Springer International Publishing

share
TEILEN

Abstract

Touch mode capacitive pressure sensors have been a vital utilisation of Micro Electro Mechanical Systems (MEMS) offering better exhibitions on account of their efficiency, precision and utility. Graphene has been viewed as a promising material for MEMS because of its high elasticity, high tensile strength and tuneable elastic modulus. Graphene MEMS outperforms Silicon as Graphene can increase the sensitivity of the MEMS up to a great extent. This paper reports a Graphene and Aluminium nitride (AlN) based Double Touch Mode Capacitive Pressure Sensor (DTMCPS). A set of mathematical calculations has been presented for the sensor under study, so as to achieve high sensitivity. We used MATLAB in our paper to interpret theoretical evaluations in the form of graphical plots. This research aims at enhancing the performance of MEMS based DTMCPS so that they can be used for numerous industrial applications operating in a harsh environment.
Literatur
1.
Zurück zum Zitat Jindal, S.K., Varma, M.A., Thukral, D.: Comprehensive assessment of MEMS double touch mode capacitive pressure sensor on utilisation of SiC film as primary sensing element: mathematical modelling and numerical simulation. Microelectron. J. 73, 30–36 (2018) CrossRef Jindal, S.K., Varma, M.A., Thukral, D.: Comprehensive assessment of MEMS double touch mode capacitive pressure sensor on utilisation of SiC film as primary sensing element: mathematical modelling and numerical simulation. Microelectron. J. 73, 30–36 (2018) CrossRef
2.
Zurück zum Zitat Dai, C.-L., Lu, P.-W., Chang, C., Liu, C.-Y.: Sensors 9, 10158–10170 (2009) CrossRef Dai, C.-L., Lu, P.-W., Chang, C., Liu, C.-Y.: Sensors 9, 10158–10170 (2009) CrossRef
3.
4.
Zurück zum Zitat Jindal, S.K., Raghuwanshi, S.K.: Capacitance and sensitivity calculation of double touch mode capacitive pressure sensor: theoretical modeling and simulation. Microsyst. Technol. 23(1), 135–142 (2016) CrossRef Jindal, S.K., Raghuwanshi, S.K.: Capacitance and sensitivity calculation of double touch mode capacitive pressure sensor: theoretical modeling and simulation. Microsyst. Technol. 23(1), 135–142 (2016) CrossRef
5.
Zurück zum Zitat Berger, C., Phillips, R., Pasternak, I., Sobieski, J., Strupinski, W., Vijayaraghavan, A.: Touch-mode capacitive pressure sensor with Graphene-polymer heterostructure membrane. 2D Mater. 5, 015025 (2018) CrossRef Berger, C., Phillips, R., Pasternak, I., Sobieski, J., Strupinski, W., Vijayaraghavan, A.: Touch-mode capacitive pressure sensor with Graphene-polymer heterostructure membrane. 2D Mater. 5, 015025 (2018) CrossRef
6.
Zurück zum Zitat Zhang, Y., Gui, Y., Meng, F., Gao, C., Hao, Y.: Design of a Graphene capacitive pressure sensor for ultra-low-pressure detection. In: 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2016) Zhang, Y., Gui, Y., Meng, F., Gao, C., Hao, Y.: Design of a Graphene capacitive pressure sensor for ultra-low-pressure detection. In: 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2016)
7.
Zurück zum Zitat Eswaran, P., Malarvizhi, S.: MEMS capacitive pressure sensors: a review on recent development and prospective. Int. J. Eng. Technol. 5, 2734–2746 (2013) Eswaran, P., Malarvizhi, S.: MEMS capacitive pressure sensors: a review on recent development and prospective. Int. J. Eng. Technol. 5, 2734–2746 (2013)
Metadaten
Titel
Mathematical Modeling and Numerical Simulation of a Double Touch-Mode Pressure Sensor with Graphene as the Sensing Element
verfasst von
Smiti Tripathy
Shiyona Dash
Sumit Kumar Jindal
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39875-0_34