Skip to main content
Erschienen in: Meccanica 1/2016

22.05.2015

Mathematical modelling of time dependent flow of non-Newtonian fluid through unsymmetric stenotic tapered artery: Effects of catheter and slip velocity

verfasst von: J. V. Ramana Reddy, D. Srikanth, S. V. S. S. N. V. G. Krishna Murthy

Erschienen in: Meccanica | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article pulsatile nature of blood flow through unsymmetric stenosed tapered artery in the presence of catheter has been modelled. Blood is represented by micropolar fluid. The analytical solutions for velocity and microrotation components are obtained in terms of Bessel functions of the first and second kind. Flow parameters such as the resistance to flow (impedance) in the artery and wall shear stress at the maximum height of the stenosis have been calculated and the effects of various parameters such as shape parameter (\(n\)), tapered parameter (\(\zeta \)), slip velocity (\(u_{1}\), \(u_{2}\)), radius of the catheter (\(r_{c}\)), Reynolds number (\(Re\)), Strouhal number (\(\sigma \)), micropolar parameter (\(m\)), coupling number (\(N\)) and height of the stenosis (\(\epsilon \)) on impedance and wall shear stress are discussed. The locations of the maximum height of the stenosis and the annular radius which are dependent on both tapered parameter (\(\zeta \)) and shape parameter (\(n\)) are computed. It is observed that impedance is increasing while catheter radius, height of the stenosis, coupling number are increasing, while it is decreasing in case of shape parameter and micropolar parameter. Shape parameter has no effect on wall shear stress at the maximum height of the stenosis in case of non-tapered artery. However it is dependent on \(n\) in case of tapered artery. In particular wall shear stress decreases as stenosis is becoming more and more asymmetric in case of diverging tapered artery and the behaviour is exactly reverse in case of converging tapered artery. Also a comparison of the results for impedance of the present model with the experimental results of Back [4] have been carried out, it is observed that impedance increases significantly for higher values of the ratio of the radius of the catheter to that of the annular region is high.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Roose R, Lykoudis PS (1971) The fluid mechanics of the ureter. J Fluid Mech 46:625–630ADSCrossRef Roose R, Lykoudis PS (1971) The fluid mechanics of the ureter. J Fluid Mech 46:625–630ADSCrossRef
2.
Zurück zum Zitat Karahalios GT (1990) Some possible effects of a catheter on the arterial wall. Med Phys 17(5):922–925CrossRef Karahalios GT (1990) Some possible effects of a catheter on the arterial wall. Med Phys 17(5):922–925CrossRef
3.
Zurück zum Zitat Back LH, Denton TA (1992) Some arterial wall shear stress estimates in coronary angioplasty. Adv Bioengg 22:337–340 Back LH, Denton TA (1992) Some arterial wall shear stress estimates in coronary angioplasty. Adv Bioengg 22:337–340
4.
Zurück zum Zitat Back LH (1994) Estimated mean flow resistance increase during coronary artery catheterization. J Biomech 27(2):169–175CrossRef Back LH (1994) Estimated mean flow resistance increase during coronary artery catheterization. J Biomech 27(2):169–175CrossRef
5.
Zurück zum Zitat Back LH, Kwack EY, M R (1996) Flow rate—pressure drop relation in coronary angioplasty—catheter obstruction effect. J Biomech Engg 118(1):83–89CrossRef Back LH, Kwack EY, M R (1996) Flow rate—pressure drop relation in coronary angioplasty—catheter obstruction effect. J Biomech Engg 118(1):83–89CrossRef
6.
Zurück zum Zitat Jayaraman G, Tewari K (1995) Flow in a catheterised curved artery. Med Biol Engg Comput 33(5):720–724CrossRef Jayaraman G, Tewari K (1995) Flow in a catheterised curved artery. Med Biol Engg Comput 33(5):720–724CrossRef
7.
Zurück zum Zitat Rao AR, Srinivasan U (1995) Peristaltic pumping in a circular tube in the presence of an eccentric catheter. J Biomech Engg Trans ASME 117:448–454CrossRef Rao AR, Srinivasan U (1995) Peristaltic pumping in a circular tube in the presence of an eccentric catheter. J Biomech Engg Trans ASME 117:448–454CrossRef
8.
Zurück zum Zitat Young DF (1968) Effect of time dependent stenosis on flow through a tube. J Eng Ind Trans ASME 90:248–254CrossRef Young DF (1968) Effect of time dependent stenosis on flow through a tube. J Eng Ind Trans ASME 90:248–254CrossRef
9.
Zurück zum Zitat Lee JS, Fung YC (1970) Flow in locally constricted tubes at low Reynolds numbers. J Appl Mech Trans ASME 37:9–16MATHCrossRef Lee JS, Fung YC (1970) Flow in locally constricted tubes at low Reynolds numbers. J Appl Mech Trans ASME 37:9–16MATHCrossRef
10.
Zurück zum Zitat Padmanabhan (1980) Mathematical model of arterial stenosis. Med Biol Eng Comput 18:281–286CrossRef Padmanabhan (1980) Mathematical model of arterial stenosis. Med Biol Eng Comput 18:281–286CrossRef
11.
Zurück zum Zitat Forrester John H, Young Donald F (1970) Flow through a converging—diverging tube and its implications in occlusive vascular disease-II. J Biomech 3:307–316CrossRef Forrester John H, Young Donald F (1970) Flow through a converging—diverging tube and its implications in occlusive vascular disease-II. J Biomech 3:307–316CrossRef
12.
Zurück zum Zitat Shukla JB, Parihar RS, Rao BRP (1980) Effects of stenosis on non-Newtonian flow of the blood in an artery. Bull Math Bio 42:283–294MATHCrossRef Shukla JB, Parihar RS, Rao BRP (1980) Effects of stenosis on non-Newtonian flow of the blood in an artery. Bull Math Bio 42:283–294MATHCrossRef
13.
Zurück zum Zitat Sinha P, Singh C (1984) Effects of couple stresses on the blood flow through an artery with mild stenosis. Biorheology 21(3):303–315 Sinha P, Singh C (1984) Effects of couple stresses on the blood flow through an artery with mild stenosis. Biorheology 21(3):303–315
14.
Zurück zum Zitat Dash RK, Jayaraman G, Mehta KN (1996) Estimation of increased flow resistance in a narrow catheterized artery—a theoretical model. J Biomech 29(7):917–930CrossRef Dash RK, Jayaraman G, Mehta KN (1996) Estimation of increased flow resistance in a narrow catheterized artery—a theoretical model. J Biomech 29(7):917–930CrossRef
15.
Zurück zum Zitat Dash RK, Jayaraman G, Mehta KN (1999) Flow in a catheterized curved artery with stenosis. J Biomech 32:49–61CrossRef Dash RK, Jayaraman G, Mehta KN (1999) Flow in a catheterized curved artery with stenosis. J Biomech 32:49–61CrossRef
16.
Zurück zum Zitat Srinivasacharya D, Srikanth D (2008) Effect of couple stresses on the flow in a constricted annulus. Arch Appl Mech 78:251–257MATHCrossRef Srinivasacharya D, Srikanth D (2008) Effect of couple stresses on the flow in a constricted annulus. Arch Appl Mech 78:251–257MATHCrossRef
17.
Zurück zum Zitat Srinivasacharya D, Srikanth D (2008) Effect of couple stresses on the pulsatile flow through a constricted annulus. Comptes Rendus Mec 336:820–827ADSMATHCrossRef Srinivasacharya D, Srikanth D (2008) Effect of couple stresses on the pulsatile flow through a constricted annulus. Comptes Rendus Mec 336:820–827ADSMATHCrossRef
18.
Zurück zum Zitat Akbar Noreen Sher, Naddem S (2014) Simulation of peristaltic flow of chyme in small intestine for couple stress fluid. Meccanica 49:325–334MATHMathSciNetCrossRef Akbar Noreen Sher, Naddem S (2014) Simulation of peristaltic flow of chyme in small intestine for couple stress fluid. Meccanica 49:325–334MATHMathSciNetCrossRef
19.
Zurück zum Zitat Sankar DS, Hemalatha K (2007) A non-Newtonian fluid flow model for blood flow through a catheterized artery: steady flow. Appl Math Model 31(9):1847–1864MATHCrossRef Sankar DS, Hemalatha K (2007) A non-Newtonian fluid flow model for blood flow through a catheterized artery: steady flow. Appl Math Model 31(9):1847–1864MATHCrossRef
20.
21.
22.
Zurück zum Zitat Srinivasacharya D, Srikanth D (2012) Flow of micropolar fluid through catheterized artery—a mathematical model. Int J Biomath 5(2):36–48MathSciNet Srinivasacharya D, Srikanth D (2012) Flow of micropolar fluid through catheterized artery—a mathematical model. Int J Biomath 5(2):36–48MathSciNet
23.
Zurück zum Zitat Srinivasacharya D, Srikanth D (2007) Pulsatile flow of a micropolar fluid through constricted annulus. Int J Appl Math Mech 3(3):36–48 Srinivasacharya D, Srikanth D (2007) Pulsatile flow of a micropolar fluid through constricted annulus. Int J Appl Math Mech 3(3):36–48
24.
Zurück zum Zitat Srivastava VP, Saxena M (1994) Two-layered model of casson fluid flow through stenotic blood vessel applications to the cardiovascular system. J Biomech 27(7):921–928CrossRef Srivastava VP, Saxena M (1994) Two-layered model of casson fluid flow through stenotic blood vessel applications to the cardiovascular system. J Biomech 27(7):921–928CrossRef
25.
Zurück zum Zitat Singh Bijendra, Joshi Padma, Joshi BK (2010) Blood flow through an artery having radially non-symmetric mild stenosis. Appl Math Sci 4(22):1065–1072MATHMathSciNet Singh Bijendra, Joshi Padma, Joshi BK (2010) Blood flow through an artery having radially non-symmetric mild stenosis. Appl Math Sci 4(22):1065–1072MATHMathSciNet
26.
Zurück zum Zitat Biswas Chakraborty U S (2010) Pulsatile blood flow through a catheterized artery with an axially non-symmetrical stenosis. Appl Math Sci 4(58):2865–2880MATHMathSciNet Biswas Chakraborty U S (2010) Pulsatile blood flow through a catheterized artery with an axially non-symmetrical stenosis. Appl Math Sci 4(58):2865–2880MATHMathSciNet
27.
Zurück zum Zitat Ponalagusamy R, Tamil Selvi R (2013) Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field. Meccanica 48:2427–2438MATHMathSciNetCrossRef Ponalagusamy R, Tamil Selvi R (2013) Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field. Meccanica 48:2427–2438MATHMathSciNetCrossRef
28.
Zurück zum Zitat Mekheimer KhS, El Kot MA (2008) The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech Sin 24:637–644ADSMATHMathSciNetCrossRef Mekheimer KhS, El Kot MA (2008) The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech Sin 24:637–644ADSMATHMathSciNetCrossRef
29.
30.
Zurück zum Zitat Vand V (1948) Viscosity of solutions and suspensions. J Phys Chem 52:277–321CrossRef Vand V (1948) Viscosity of solutions and suspensions. J Phys Chem 52:277–321CrossRef
31.
33.
Zurück zum Zitat Misra JC, Shit GC (2007) Role of slip velocity in blood flow through stenosed arteries: a non-newtonian model. J Mech Med Biol 7:337–353CrossRef Misra JC, Shit GC (2007) Role of slip velocity in blood flow through stenosed arteries: a non-newtonian model. J Mech Med Biol 7:337–353CrossRef
Metadaten
Titel
Mathematical modelling of time dependent flow of non-Newtonian fluid through unsymmetric stenotic tapered artery: Effects of catheter and slip velocity
verfasst von
J. V. Ramana Reddy
D. Srikanth
S. V. S. S. N. V. G. Krishna Murthy
Publikationsdatum
22.05.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1/2016
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0201-5

Weitere Artikel der Ausgabe 1/2016

Meccanica 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.