Skip to main content
Erschienen in:
Buchtitelbild

Open Access 2022 | OriginalPaper | Buchkapitel

2. Mathematiklernen und Motivation bei Schüler*innen mit Lernschwierigkeiten

verfasst von : Maximilian Hettmann

Erschienen in: Motivationale Aspekte mathematischer Lernprozesse

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Schulische Lernprozesse sind abhängig von zahlreichen Faktoren. Helmke (2017) stellt mit dem Angebots-Nutzungs-Modell einen strukturellen Rahmen vor, der diese Zusammenhänge auf empirischer Basis in ein Bedingungsgefüge setzt (vgl. S. 71).
Schulische Lernprozesse sind abhängig von zahlreichen Faktoren. Helmke (2017) stellt mit dem Angebots-Nutzungs-Modell einen strukturellen Rahmen vor, der diese Zusammenhänge auf empirischer Basis in ein Bedingungsgefüge setzt (vgl. ebd. S. 71).
(Förder-)Unterricht wird hierbei als Lernangebot modelliert, das die Schüler*innen als Lerngelegenheit nutzen können, aber nicht zwangsläufig nutzen. Die Nutzung des Lernangebots, also die Lernaktivitäten der Schüler*innen hängen neben der Qualität und Quantität des Lernangebots insbesondere von den Charakteristika der Lernenden ab. Hier haben sich selektive Aufmerksamkeit und Arbeitsgedächtnis, Strategienutzung, Vorwissen und motivationale Aspekte als wichtige Voraussetzungen für erfolgreiche Lernprozesse erwiesen (vgl. Hasselhorn und Gold 2017). Während die kognitiven Fähigkeiten die Qualität der Angebotsnutzung beeinflussen, wirken motivationale Aspekte auf die Wahrscheinlichkeit der Angebotsnutzung durch die Schüler*innen. Wenn die Schüler*innen das Angebot effektiv nutzen, kann es zu den erwünschten Wirkungen von Unterricht auf Ebene der Schüler*innenkompetenzen1 kommen.
Gerahmt wird das Modell von den Einflussfaktoren auf die Gestaltung des Lernangebots und die Angebotsnutzung. Die Charakteristika der Lernenden werden besonders vom familiären Kontext, wie der Herkunft oder dem sozioökonomischen Status, bedingt (vgl. Moser Opitz 2013). Die Merkmale der Lehrperson nehmen indirekt über die Ausgestaltung des Lernangebots Einfluss auf das Lernen der Schüler*innen. Die schulischen Kontextbedingungen beeinflussen den gesamten Prozess der Angebotsbereitstellung und -nutzung (vgl. Helmke 2017).
Ziel der folgenden Abschnitte ist es, im Rahmen dieses Bedingungsgefüges schulischen Lernens die Besonderheiten von Schüler*innen mit Lernschwierigkeiten im Fach Mathematik herauszustellen. In Abschnitt 2.1 wird dafür zunächst der Begriff der Lernschwierigkeiten genauer definiert und von anderen, in diesem Kontext typischerweise genutzten Begriffen, wie Lernbehinderung, -störung und -schwäche, abgegrenzt. Daraufhin werden Lernprozesse und deren Voraussetzungen bei Schüler*innen mit Lernschwierigkeiten beschrieben. Die motivationalen Voraussetzungen werden aufgrund ihrer Relevanz für die Fragestellung dieser Arbeit in einem gesonderten Abschnitt (2.2) behandelt. In Abschnitt 2.3 werden Qualitätskriterien aus der Fachliteratur zur Qualität und Effektivität von Unterricht herausgearbeitet, die für den Unterricht von Schüler*innen mit Lernschwierigkeiten von besonderer Bedeutung sind. In Abschnitt 2.4 wird zusammenfassend ein Modell zur Förderung mathematischer Leistung und individueller Motivation bei Schüler*innen mit Schwierigkeiten beim Lernen entwickelt. Abschnitt 2.5 gibt einen Einblick in potenzielle motivationspsychologische Erweiterungen des theoretischen Modells.
Das Kapitel 3 befasst sich daran anschließend mit den Merkmalen der Lehrperson, insbesondere mit deren professionellen Kompetenzen. In Kapitel 4 wird dann auf Basis der vorangegangenen Erkenntnisse zusammenfassend ein Seminarkonzept für angehende Mathematiklehrkräfte beschrieben, das die Förderung individueller Motivation und mathematischer Leistung für Schüler*innen mit Lernschwierigkeiten fokussiert.

2.1 Mathematiklernen bei Schüler*innen mit mathematischen Lernschwierigkeiten

2.1.1 Mathematische Lernschwierigkeiten – Begriffe und Charakterisierung

In der Literatur finden sich zahlreiche Begrifflichkeiten für gescheiterte Lernprozesse oder Probleme beim Lernen, wie Lernbehinderung, Lernstörung oder Lernschwäche. Diese Begriffe werden in der Regel über den Quotienten der allgemeinen Intelligenz (IQ) definiert und darüber voneinander abgegrenzt (vgl. Moser Opitz 2013). Eine Lernbehinderung oder auch ein sonderpädagogischer Förderbedarf im Förderschwerpunkt Lernen liegt vor, wenn Schüler*innen einen erheblichen Leistungsrückstand und eine deutlich geringere Intelligenz im Vergleich zum Durchschnitts-IQ (IQ-Werte < 70) aufweisen. Mathematische Lernstörungen und -schwächen werden als Minderleistungen beim Rechnen ohne gleichzeitige Intelligenz-Minderung (IQ-Werte \(\ge\) 70) definiert. Bei der Lernstörung2 ist diese Diskrepanz jedoch deutlicher als bei der Lernschwäche (vgl. ausführlicher Gold, 2018). Moser-Opitz (2013) zeigt auf, dass das Diskrepanz-Kriterium zwischen Intelligenz und Rechenleistung zur Definition von Lernschwierigkeiten kritisch betrachtet wird. Begründet wird die Kritik einerseits anhand der Studienlage, die aufzeigt, dass Schüler*innen mit Lernschwierigkeiten eine große Streuung in Intelligenztests aufweisen (vgl. z. B. Wagner und Garon 1999), und andererseits mit Studien, in denen bei verschiedenen mathematischen Aufgaben keine einheitlichen Leistungsprofile von Schüler*innen mit Lernschwierigkeiten und hohen bzw. niedrigen Intelligenz-Werten gefunden werden konnten (vgl. Gonzalez und Espinel 1999; 2002).
Vor diesem Hintergrund wird in dieser Arbeit, Gold (2018) und Moser Opitz (2013) folgend, der allgemeinere Begriff der mathematischen Lernschwierigkeiten verwendet. Lernschwierigkeiten im Fach Mathematik zeigen sich besonders in einem Versagen im Mathematikunterricht bei Schüler*innen auf unterschiedlichen Intelligenzniveaus, also in stark unterdurchschnittlichen Mathematikleistungen und einem deutlich langsameren Erwerb mathematischer Kompetenzen. Schüler*innen mit mathematischen Lernschwierigkeiten benötigen über den Mathematikunterricht hinaus eine externe Förderung, um das geforderte Regelniveau erreichen zu können (vgl. Schipper 2005). Durch diese Definition lassen sich Lernschwierigkeiten zusammenfassen, die auf kognitiven Einschränkungen oder auf unangemessene Beschulung zurückzuführen sind (vgl. Moser Opitz 2013). Das Konstrukt der mathematischen Lernschwierigkeiten umfasst demnach eine heterogene Schüler*innengruppe, die im Folgenden nur vorsichtig charakterisiert werden kann.
Je nach Definition von mathematischen Lernschwierigkeiten sind ein Anteil von ca. 20 % aller Kinder davon betroffen, eine mathematische Lernstörung ist bei 3–6 % zu beobachten (vgl. Schipper 2005; Kucian und Aster 2015; Shalev und Aster 2008). Diese Kinder zeichnen sich insbesondere durch Probleme im Stoff der Grundschulmathematik aus, selbst wenn sie schon höhere Jahrgangsstufen besuchen (vgl. z. B. Jones et al. 1997). Ihre Leistungen sind bis zu vier Schuljahre hinter denen ihrer Mitschüler*innen zurück, sie brauchen deutlich länger zur Erarbeitung neuer Inhalte und zeigen geringere Lernfortschritte (vgl. Parmar und Cawley 1997). Hinsichtlich mathematischer Aspekte nutzen sie vermehrt ungünstige Lern- und Lösungsstrategien, wie das zählende Rechnen, haben Probleme bei der Unterscheidung von links und rechts, beim Wechsel von Darstellungsebenen sowie der Deutung von Zahlen und Operationen (vgl. Hanich et al. 2001). Außerdem zeigen sie verschiedenste Fehlermuster (vgl. Parmar und Cawley 1997) und das Problemlösen bereitet ihnen Schwierigkeiten (vgl. Hanich et al. 2001). (vgl. zusf. Moser Opitz 2013; Schipper 2005)

2.1.2 Lernen als Konstruktion von Wissen

Große Teile des akademischen Lernens haben zum Ziel, Wissen zu erwerben bzw. zu konstruieren und Kompetenzen aufzubauen. Lernen wird dabei als individueller, aktiver und kumulativer Prozess der eigenständigen Verarbeitung und Konstruktion von Wissen und Fähigkeiten verstanden (vgl. Hammer 2016; Kunter und Voss 2011).
Für den Erwerb dieses Wissens stellen Hasselhorn und Gold (2017) in Anlehnung an Mayer (1992) ein vereinfachtes Modell der menschlichen Informationsverarbeitung auf. Lernen wird darin als interdependentes System der Informationsaufnahme, -organisation und -integration modelliert.
Informationen werden in den sensorischen Registern, die zur Verarbeitung visueller und auditiver Reize zuständig sind, sehr kurzfristig, unter eine Sekunde lang, gespeichert. Über Prozesse der selektiven Aufmerksamkeit wird aus der Informationsfülle ein Teil der Informationen gezielt oder unwillkürlich ausgewählt, die in das Arbeitsgedächtnis weitergegeben werden. Nicht weitergegebene Informationen werden wieder vergessen. Das Arbeitsgedächtnis dient als kognitives System, das es dem Individuum ermöglicht, die Informationen für wenige Sekunden zu sammeln, verarbeiten und mit neuen und bereits bestehenden Informationen in Beziehung zu setzen (vgl. Zoelch et al. 2019). Die im Arbeitsgedächtnis ablaufenden Prozesse der Organisation neuen und alten Wissens und der Integration in bestehende Wissensstrukturen im Langzeitgedächtnis, bezeichnet man als Konstruktion von Wissen (vgl. Hasselhorn und Gold 2017). Im Langzeitgedächtnis werden die neugewonnenen und -organisierten Informationen clusterartig langfristig in semantischen Netzwerken gespeichert (vgl. Kunter und Trautwein 2013). Diese langfristig gespeicherten Informationen nehmen einen Einfluss auf die selektive Aufmerksamkeit und die Verarbeitung neuer Informationen (vgl. Hasselhorn und Gold 2017).
Baddeley (2000) hat für das Arbeitsgedächtnis ein Modell vorgestellt, das aus vier Elementen besteht: Einer zentralen Exekutive, die die Verarbeitungsprozesse im Arbeitsgedächtnis überwacht und steuert, einem visuell-räumlichen Notizblock, welcher für die Speicherung und Verarbeitung von visuellen und räumlichen Informationen zuständig ist, die phonologische Schleife, die entsprechend für sprachliche und akustische Informationen zuständig ist, und dem episodischen Puffer, der als Schnittstelle zum Langzeitgedächtnis fungiert (vgl. auch Hasselhorn und Gold 2017).

2.1.3 Voraussetzungen erfolgreichen Lernens bei Schüler*innen mit Lernschwierigkeiten

Nach dem INVO Modell von Hasselhorn und Gold (2017) unterscheiden sich erfolgreiche Lerner*innen von weniger erfolgreichen in vier Aspekten individueller Voraussetzungen: Aufmerksamkeits- und Arbeitsgedächtnisfunktionen, Vorwissen, Lernstrategien sowie motivationale und volitionale Dispositionen.
Aufmerksamkeits- und Arbeitsgedächtnisfunktionen umfassen zum einen die Aufmerksamkeitsprozesse, bei denen aus der dargebotenen Informationsfülle nur diejenigen Informationen in das Arbeitsgedächtnis aufgenommen werden, auf die Aufmerksamkeit gelegt wird. Zum anderen gehören dazu alle Organisationsprozesse in den verschiedenen Teilsystemen des Arbeitsgedächtnisses. Vor dem Hintergrund der oben skizzierten Modellierung der Konstruktion von Wissen ist die besondere Bedeutung dieser Prozesse für das Mathematiklernen und das Lernen im Allgemeinen offensichtlich (vgl. Abschnitt 2.1.2). Wenn ein Individuum effizienter mathematikrelevante Informationen aufnimmt, strukturiert und verarbeitet, kann es entsprechend effektiver Neues lernen und bereits Gelerntes anwenden oder transferieren (vgl. Menon 2016). Verschiedene Studien konnten zeigen, dass Schüler*innen mit mathematischen Lernschwierigkeiten Probleme gerade in diesen Funktionen aufweisen: Für Aufmerksamkeitsprozesse konnten Shalev et al. (1995) nachweisen, dass Kinder mit Rechenstörungen signifikant häufiger Aufmerksamkeitsprobleme zeigen, als gleichaltrige Kinder ohne Rechenstörung. Haberstroh und Schulte-Körne (2019) beschreiben ebenfalls eine Koinzidenz von Aufmerksamkeitsstörungen und mathematischen Lernschwierigkeiten und Passolunghi et al. (2005) berichten, dass Kinder mit mathematischen Lernschwierigkeiten in Textaufgaben signifikant häufiger irrelevante Informationen zur Aufgabenlösung heranziehen. Für Funktionen des Arbeitsgedächtnisses zeigt Geary (2010; 2011) zusammenfassend auf, dass Zusammenhänge zu mathematischen Lernschwierigkeiten bestehen. Swanson et al. (2008) konnten beispielsweise nachweisen, dass Kinder mit mathematischen Lernschwierigkeiten geringere Leistungswerte in dem Arbeitsgedächtnis assoziierten kognitiven Facetten aufweisen als Kinder ohne Lernschwierigkeiten. Darüber hinaus legen verschiedene Studien mit Schüler*innen mit Lernschwierigkeiten in Mathematik Defizite in verschiedenen Bereichen des Arbeitsgedächtnisses offen (vgl. z. B. Passolunghi und Siegel 2004; Mammarella et al. 2015; Bull et al. 1999; Swanson und Sachse-Lee 2001; Swanson et al. 2015; Johnson et al. 2010; zusf. Moser Opitz 2013).
Die enorme Bedeutung des Vorwissens für das Lernen (von Mathematik) wurde in verschiedenen Studien nachgewiesen (vgl. z. B. Weinert et al. 1989; Grube und Hasselhorn 2006; Klauer und Leutner 2012). Diese Effekte werden unter anderem darauf zurückgeführt, dass Vorwissen zum einen Relevanzentscheidungen bei der Informationsaufnahme erleichtere und zum anderen bei der Informationsverarbeitung dazu beitrage, dass schneller Verknüpfungen zu bestehenden Wissensstrukturen aufgebaut werden können (vgl. Hasselhorn und Gold 2017; Kunter und Trautwein 2013). Moser Opitz (2013) fasst zahlreiche Studien zusammen und stellt zusammenfassend heraus, dass Kindern mit Lernschwierigkeiten Vorwissen in verschiedenen Bereichen des mathematischen Grundlagenwissens aus der Primarstufe fehlt. Dies umfasse besonders folgende Bereiche, für die Krauthausen (2018) die Wichtigkeit für das weitere mathematische Lernen betont:
  • „Zählen
  • Bündeln, Einsicht Stellenwerte, Zahlaufbau
  • Aufgaben des Typs \(a \pm ? = c\)
  • Rechnen mit der Null
  • Konzeptuelles Verständnis Multiplikation und Division
  • Verständnis von schriftlichen Verfahren
  • Vermischen von Überschlagsrechnen und Runden
  • Problemlösen, Mathematisieren: Problemlösen generell, Orientierung an Schlüsselwörtern, Verständnis von Relationalzahlen
  • Abrufen von Zahlenfakten \(\to\) zählendes Rechnen“ (Moser Opitz 2013, S. 138; vgl. auch Gold 2018)
Hinsichtlich der Strategienutzung konnte gezeigt werden, dass Kinder mit mathematischen Lernschwierigkeiten ungünstigere Lern- und Lösungsstrategien verwenden. Beispielsweise konnte am Beispiel der Einordnung natürlicher Zahlen auf dem Zahlenstrahl nachgewiesen werden, dass Kinder mit mathematischen Lernschwierigkeiten weniger funktionale Lern- und Lösungsstrategien verwenden (vgl. van der Weijden et al. 2018; van’t Noordende et al. 2016; van Viersen et al. 2013). Eine besonders häufig auftretende problematische Rechenstrategie ist die des zählenden Rechnens (vgl. Schipper 2005). Moser Opitz (2013) bezeichnet diese „als ein zentrales Merkmal von Rechenschwäche“ (S. 100). Neben Lern- und Lösungsstrategien weisen Schüler*innen mit mathematischen Lernschwierigkeiten auch schwächere metakognitive Strategien auf (vgl. Desoete et al. 2004).
Die motivationalen Voraussetzungen der Schüler*innen sind besonderer Fokus dieser Arbeit und werden daher ausführlich im folgenden Abschnitt 2.2 behandelt.
Zusammenfassend haben Schüler*innen mit mathematischen Lernschwierigkeiten eine erhöhte Wahrscheinlichkeit auf ungünstigere Lernvoraussetzungen in den Bereichen Aufmerksamkeits- und Arbeitsgedächtnisfunktionen, Vorwissen und Lernstrategien. Unabhängig davon ist zu beachten, dass Schüler*innen mit Lernschwierigkeiten nicht grundsätzlich anders Lernen als ihre Mitschüler*innen. Sie erarbeiten sich mathematische Konzepte und Verfahren auf vergleichbare Art und Weise, brauchen dafür nur mehr Zeit und erreichen oftmals nicht das gleiche Niveau (vgl. Gerster und Schultz 2004; Parmar et al. 1994; Moser Opitz 2013; Gold 2016).

2.2 Motivation bei Schüler*innen mit Lernschwierigkeiten

Motivation bezeichnet nach Rheinberg und Vollmeyer (2019) die „aktivierende Ausrichtung des momentanen Lebensvollzugs auf einen positiv bewerteten Zielzustand“ (S. 15). Bandura (2001) ergänzt, dass dieses zielgerichtete Verhalten durch Erfolgserwartungen eingeleitet und aufrechterhalten wird. Individuen unterscheiden sich in ihrem individuellen Motivationsgeschehen. Dabei lassen sich insbesondere bei Schüler*innen mit Schwierigkeiten beim Lernen Unterschiede zu ihren Mitschüler*innen nachweisen. In den folgenden Abschnitten wird darauf fokussiert,
1.
inwiefern Schüler*innen Erfolge und Misserfolge bei herausfordernden Anforderungssituationen erwarten (Selbstwirksamkeit),
 
2.
wie Schüler*innen ihre eigenen Leistungen einschätzen und bewerten (Leistungsbezogenes Selbstvertrauen und Selbstkonzept) und
 
3.
wie Schüler*innen Erfolge und Misserfolge erklären und auf welche Ursachen sie diese zurückführen (Kausalattributionen).3
 
Die drei entsprechenden motivationalen Konstrukte werden in den folgenden Abschnitten kurz theoretisch gerahmt, um anschließend Besonderheiten bei Schüler*innen mit Lernschwierigkeiten herauszustellen.

2.2.1 Selbstwirksamkeit

Das Konstrukt der Selbstwirksamkeit ist eines der meistbeforschten motivationalen Konstrukte. Bandura (1995) definiert:
„Perceived self-efficacy refers to beliefs in one’s capabilities to organize and execute the courses of action required to manage prospective situations“ (S. 2).
Schwarzer und Jerusalem (2002) ergänzen mit ihrer Definition von Selbstwirksamkeit als „subjektive Gewissheit, neue oder schwierige Anforderungssituationen auf Grund eigener Kompetenz bewältigen zu können“ eine genauere Charakterisierung der zu bewältigenden Situationen als anforderungsreich (S. 35). In beiden Definitionen werden die subjektiven Einschätzungen eines Individuums betont, genügend eigene Kompetenzen zu besitzen, um herausfordernde zukünftige Situationen zu meistern. Dieses komplexe Gedankenbündel lässt sich mit der Aussage ‚Ich glaube, ich kann diese Herausforderung bewältigen‘ zusammenfassen. Schwarzer und Jerusalem (2002) bezeichnen Selbstwirksamkeit dementsprechend auch als „optimistische Selbstüberzeugung“ (S. 37).
Der spezifische Fokus von Selbstwirksamkeitserwartungen auf Anforderungssituationen hat dazu geführt, dass sich situationsbezogene Unterkonstrukte der Selbstwirksamkeitserwartungen entwickelt haben, die einen unterschiedlichen Grad an Situationsnähe aufweisen, wie beispielsweise die mathematikbezogene Selbstwirksamkeit oder konkret aufgabenbezogene Selbstwirksamkeitsüberzeugungen. Hier konnte gezeigt werden, dass situationsnähere Ausprägungen der Selbstwirksamkeitserwartungen höhere Korrelationen zu Leistungswerten aufweisen (vgl. Schunk und DiBenedetto 2016).
Selbstwirksamkeitsüberzeugungen werden von den Konsequenzerwartungen unterschieden. Konsequenzerwartungen oder auch Handlungs-Ergebnis-Erwartungen beziehen sich auf den Zusammenhang bestimmter Verhaltensweisen und ihrer Konsequenzen (vgl. Schwarzer und Jerusalem 2002). Beispielsweise wäre eine Konsequenzerwartung für das Übe-Verhalten eine*r Schüler*in: ‚Wenn man viel übt, wird man in Mathe besser‘, also der Gedanke, dass das Üben von Fähigkeiten und Fertigkeiten zum fachlichen Erfolg führt. In Abgrenzung dazu meinen Selbstwirksamkeitserwartungen, die subjektive Überzeugung darüber, ob die Schülerin das Verhalten auch zeigen kann, also ob die Schülerin glaubt in der Lage zu sein, viel zu üben.
Hinsichtlich der Ursachen von Selbstwirksamkeitserwartungen herrscht weitestgehend Einigkeit. Es werden vorrangig vier Quellen der Selbstwirksamkeit in absteigender Wichtigkeit in der Literatur aufgeführt (vgl. Bandura 1997; Schunk und DiBenedetto 2016; Usher und Pajares 2008b):
1.
Selbstbewirkte Erfolgserlebnisse sind die stärkste Quelle der Selbstwirksamkeit (vgl. Butz und Usher 2015). Die Selbstwirksamkeit eines Individuums steigt, wenn dieses im Rahmen einer anforderungsreichen Situation durch eigene Anstrengung eine Herausforderung überwindet und dies als selbstbewirkten Erfolg interpretiert. Entgegengesetzt können Misserfolge die Selbstwirksamkeitsüberzeugungen schwächen. Dieser Zusammenhang wirkt allerdings nur, wenn zuvor noch keine starken Selbstwirksamkeitsüberzeugungen durch vorangegangene Erfolge ausgebaut wurden.
 
2.
Stellvertretende Erfahrungen können Selbstwirksamkeitserwartungen steigern, wenn Lernende sehen, wie Modelle, die selbst Schwierigkeiten hatten, eine Herausforderung zu bewältigen, diese bewältigen. Dahinter steckt der Gedanke, ‚wenn andere es können, kann ich es auch‘. Diese Quelle der Selbstwirksamkeit ist besonders effizient, wenn das Modell dem Lernenden ähnelt.
 
3.
Überredung ist die dritte Quelle für Selbstwirksamkeit. Hier geht es darum, Lernende durch verbale Aussagen wie ‚du kannst es‘ davon zu überzeugen, dass sie Herausforderungen, denen sie gegenüberstehen, bewältigen können. Hier ist wichtig, dass die überredende Person subjektiv glaubwürdig ist. Eine Form der Überredung ist das Attributionale Feedback (vgl. Kapitel 4).
 
4.
Physiologische Einflüsse sind die schwächste Quelle der Selbstwirksamkeit. Dabei werden physiologische Reaktionen, wie Angstreaktionen oder Stress in der Schule als Hinweis für fehlende Kompetenz interpretiert. Diese Interpretationen wirken sich dann negativ auf die Selbstwirksamkeit aus.
 
Bei allen der vier Quellen der Selbstwirksamkeit ist wichtig, wie diese Erlebnisse interpretiert werden und auf welche Ursachen sie jeweils zurückgeführt werden (vgl. Abschnitt 2.2.3). Studien, die auf eine Förderung von Selbstwirksamkeit zielen, fokussieren maßgeblich auf die vier von Bandura benannten Quellen der Selbstwirksamkeit und bestätigen deren Bedeutung (vgl. Usher und Pajares 2006; Usher und Pajares 2008b; für die mathematikbezogene Selbstwirksamkeit: Phan 2012; Joët et al. 2011). Yetkin Özdemir und Pape (2013) weisen darauf hin, dass Schüler*innen in ihrer Fallstudie Erfolgserlebnisse individuell unterschiedlich wahrgenommen haben und die Art der Leistung sowie die Unterstützung durch die Lehrkraft einen Einfluss auf die Selbstwirksamkeit nehmen können. Einige aktuelle Studien berichten darüber hinaus positive Effekte auf die Selbstwirksamkeit von Schüler*innen
  • für eine Intervention mit Modellierungsaufgaben (vgl. Schukajlow et al. 2012; Schukajlow und Krug 2012),
  • für problembasiertes Lernen (vgl. Masitoh und Fitriyani 2018),
  • in einer explorativen Studie für eine Intervention mit Fermi-Aufgaben (vgl. Reinhold et al. 2020),
  • bei einer Intervention, in der die Schüler*innen multiple Lösungswege für Modellierungsaufgaben produzieren sollten (vgl. Schukajlow et al. 2019),
  • in einer explorativen Studie bei einer Intervention, die auf die Veränderung ungünstiger Überzeugungen von Schüler*innen zielt (vgl. Stylianides und Stylianides 2014) sowie
  • bei einer Intervention, in der Mathematiklehrkräfte darin angeleitet wurden, bestimmte Formen des Feedbacks und der Zielsetzung in ihrem Unterricht zu nutzen (vgl. Siegle und McCoach 2007).
Hinsichtlich der Auswirkungen von Selbstwirksamkeit in pädagogischen Kontexten werden Studien zu folgenden Bereichen berichtet: Motivation, Lernprozesse und Leistung (vgl. zusf. Zimmerman 2000; Schunk und DiBenedetto 2016; Schunk und Pajares 2005; für die Mathematik: Pantziara 2016). Hinsichtlich motivationaler Aspekte lässt sich nachweisen, dass Lernende entsprechend ihrer Selbstwirksamkeit Entscheidungen treffen (vgl. zusf. Patall 2012). Beispielsweise konnten Bandura und Schunk (1981) nachweisen, dass eine höhere mathematikbezogene Selbstwirksamkeit dazu führt, dass Schüler*innen eher mathematische Aktivitäten ausführen als Aktivitäten mit anderem Fachbezug und Pantziara und Philippou (2015) konnten Zusammenhänge der Selbstwirksamkeit zum mathematischen Interesse aufzeigen. Lernende mit höherer Selbstwirksamkeit wählen eher herausfordernde und schwierige Aufgaben und bearbeiten diese mit einer höheren Ausdauer, Anstrengung und Resilienz (vgl. Salomon 1984; Schunk und DiBenedetto 2016; Multon et al. 1991). Für Lernprozesse lassen sich insbesondere Zusammenhänge der Selbstwirksamkeit mit selbstregulativen und metakognitiven Fähigkeiten nachweisen (vgl. Usher und Pajares 2008a). Beispielsweise wählen Lernende mit höherer Selbstwirksamkeit eher herausfordernde Ziele (vgl. Zimmerman et al. 1992), sind eher in der Lage, ihren Arbeitsprozess zu überwachen und nutzen effektivere Lern- und Lösungsstrategien (vgl. Bouffard-Bouchard et al. 1991; Zimmerman und Martinez-Pons 1990). Für die Zusammenhänge der Selbstwirksamkeit mit verschiedenen Leistungsvariablen gibt es innerhalb und außerhalb der mathematischen Domäne zahlreiche Untersuchungen, die positive Effekte berichten (vgl. Honicke und Broadbent 2016; Stajkovic und Luthans 1998; Williams und Williams 2010; Pantziara und Philippou 2015; Chang 2012; Hoffman und Spatariu 2008). Hannula et al. (2014) konnten für die mathematische Domäne zeigen, dass eine reziproke Beziehung zwischen der Selbstwirksamkeit und der Leistung besteht, allerdings scheint der Effekt der Leistung auf die Selbstwirksamkeit größer zu sein, als der umgekehrte Effekt (vgl. auch Street et al. 2018).

2.2.2 Akademisches Selbstkonzept

Shavelson et al. (1976) beschreiben das Konstrukt des Selbstkonzepts:
„In very broad terms, self-concept is a person’s perception of himself” (Shavelson et al. 1976, S. 411).
Diese Selbstwahrnehmung ist ein deskriptives mentales Modell eines Individuums über dessen Fähigkeiten und Eigenschaften (vgl. Moschner und Dickhäuser 2018). Lernende beschreiben sich nicht nur auf der deskriptiven Ebene, sondern messen ihre Beschreibungen an Gütemaßstäben und bewerten sie daran (vgl. Shavelson et al. 1976). Marsh und Shavelson (1985) charakterisieren das Selbstkonzept anhand verschiedener Aspekte: Das Selbstkonzept ist in einzelne Facetten hierarchisch organisiert. So lassen sich einem allgemeinen Selbstkonzept untergeordnet, akademische und nicht-akademische Selbstkonzepte unterscheiden und wiederum dem akademischen Selbstkonzept untergeordnet das mathematische und das verbale Selbstkonzept (vgl. auch Marsh et al. 1988; s. Abbildung 2.1).
Je tiefer die Facette des Selbstkonzepts in der Hierarchie angeordnet ist, desto situationsspezifischer und somit veränderbarer ist sie. Während das allgemeine Selbstkonzept sehr stabil ist, lassen sich Selbstkonzepte auf den tieferen Ebenen, beispielsweise ein Selbstkonzept für das Lösen von arithmetischen Aufgaben, eher beeinflussen. Die Ausgestaltung des Selbstkonzepts in einzelne Facetten wird im Verlauf der Entwicklung eines Menschen differenzierter und ausführlicher. Ein letzter Aspekt des Selbstkonzepts ist, dass es sich von anderen Konstrukten abgrenzen lässt, insbesondere von der Leistung. Das akademische Selbstkonzept lässt sich vor diesem Hintergrund als Selbstbeschreibungen und -bewertungen eines Individuums über ihre*seine akademischen Fähigkeiten definieren.
Das akademische Selbstkonzept speist sich aus zwei zentralen Quellen: Erfahrungen hinsichtlich der eigenen Fähigkeiten und Leistungsrückmeldungen von relevanten Bezugspersonen. Dabei spielen besonders kognitive Verarbeitungsprozesse wie Ursachenzuschreibungen (vgl. Abschnitt 2.2.3) und soziale Vergleichsprozesse eine besondere Rolle. Hinsichtlich der Vergleichsprozesse zeigt sich ein eindrücklicher Effekt, der den Einfluss der Informationen über soziale Vergleiche aufzeigt. Der Big-Fish-Little-Pond-Effekt beschreibt das Phänomen, dass das Selbstkonzept von Schüler*innen von der individuell wahrgenommenen relativen Position in der Rangreihe der Klasse abhängt. Zwei Schüler*innen mit gleicher Leistung weisen in der Tendenz unterschiedliche Selbstkonzepte auf, je nachdem, ob sie sich am unteren oder oberen Ende der Leistungsrangfolge einer Bezugsgruppe befinden (vgl. Lüdtke et al. 2005; Marsh 2005; Marsh und Hau 2003). Für den Mathematikunterricht konnten Cambria et al. (2017) den Big-Fish-Little-Pond-Effekt für das Selbstkonzept und weitere motivationale Variablen nachweisen.
In einer Meta-Studie konnten O’Mara et al. (2006) die Bedeutung von Lob- und Feedbackprozessen für den Aufbau eines positiven Selbstkonzepts nachweisen. Diese Effekte zeigten sich bei Interventionen mit und ohne parallele Förderung von Fähigkeiten. Insbesondere konnten sie zeigen, dass eine Förderung von Fähigkeiten ohne Lob und Feedback geringere Effektstärken aufweist als deren Kombination. Darüber hinaus berichten Sproesser et al. (2015) von positiven Effekten auf das statistikbezogene Selbstkonzept einer Intervention, die auf die drei psychologischen Grundbedürfnisse (vgl. Ryan und Deci 2004) zielt.
Für das akademische Selbstkonzept lassen sich Zusammenhänge mit motivationalen Variablen und akademischen Leistungen nachweisen. Hinsichtlich motivationaler Aspekte konnten Marsh et al. (2005) in einer Längsschnittstudie zeigen, dass das mathematische Selbstkonzept einen signifikanten Einfluss sowohl auf das mathematische Interesse als auch auf die mathematischen Leistungen in Schulnoten und standardisierten Tests nimmt. Diese Effekte waren reziprok. In einer anderen Studie konnten Marsh et al. (2016) Zusammenhänge des akademischen Selbstkonzepts mit Anstrengung und akademischen Leistungen nachweisen. Ahmed et al. (2012) konnten zeigen, dass das mathematische Selbstkonzept einen negativ-reziproken Zusammenhang zu mathematikbezogener Ängstlichkeit hat. Hinsichtlich der akademischen Leistungen hat sich in einigen weiteren Studien herausgestellt, dass ein reziproker Zusammenhang zum Selbstkonzept besteht (vgl. Marsh und Craven 2006; Marsh et al. 2018; Seaton et al. 2014; für die mathematische Domäne vgl. z. B. Skaalvik und Skaalvik 2006).

2.2.3 Ursachen für Erfolge und Misserfolge – Kausalattributionen

Für die Verarbeitung erfolgs- und misserfolgsbezogener Erfahrungen sind die Ursachen, die Individuen diesen zuschreiben, von besonderer Bedeutung. Die Attributionstheorie befasst sich mit diesen Ursachenzuschreibungen. Nach Weiner (2010) werden Attributionen hinsichtlich zweier Dimensionen unterschieden (s. Abbildung 2.2): Ihrer Lokalität und ihrer Stabilität. Internal lokalisierte Ursachen liegen in der Person selbst, während externale Ursachen außerhalb liegen. Stabile Ursachen sind zeitlich langfristiger überdauernd und eher unveränderbar, während variable Ursachen sich ändern können.
Beispiele für internal-stabile Ursachen sind dispositionale Aspekte, wie die eigenen Fähigkeiten oder die allgemeine Intelligenz4. Diese sind in der Person liegend, allerdings relativ stabil. Internal, aber variabler ist die momentane Anstrengung oder die verwendeten Lern- und Lösungsstrategien der Lernenden. External stabile Attributionen sind die Schwierigkeit der Aufgabe oder sich nicht ändernde Merkmale des Unterrichts, wie die Sympathie der Lehrkraft oder die Klassenzusammensetzung. External variable Attributionen sind Aspekte wie Glück und Pech oder aber Merkmale des Unterrichts, die Schüler*innen als variabel wahrnehmen. In einigen Ansätzen werden noch weitere Dimensionen unterschieden: die Kontrollierbarkeit bezieht sich darauf, inwieweit das Individuum die Ursache für Erfolg oder Misserfolg kontrollieren kann und die Globalität beschreibt, ob die Ursache spezifisch für diese Situation oder global über mehrere Situationen gültig ist (vgl. Möller 2018; Stiensmeier-Pelster und Schwinger 2007).
Ursachenzuschreibungen für Erfolge und Misserfolge werden besonders durch leistungsbezogene Informationen aus dem eigenen Erleben in Leistungssituationen sowie durch das Verhalten von der Lehrkraft oder Mitschüler*innen beeinflusst. Dabei spielen besonders drei Informationsarten eine Rolle (vgl. Möller 2018): Konsensus-Informationen geben Informationen darüber, inwieweit ein Merkmal bei vielen Personen (hoher Konsensus) bzw. bei wenigen Personen (niedriger Konsensus) auftritt. Distinktheits-Informationen machen eine Aussage darüber inwieweit ein Merkmal nur in bestimmten (hohen Distinktheit) oder in vielen vergleichbaren Situationen (niedrige Distinktheit) auftritt. Konsistenz-Informationen geben wieder, ob eine Reaktion mehrfach aufgetreten ist (hohe Konsistenz) oder nur einmalig (niedrige Konsistenz). Schneidet ein Individuum bei einer Klassenarbeit schlecht ab, dann wird es diesen Misserfolg in Abhängigkeit von den drei beschriebenen Informationen interpretieren. Ist der Konsensus niedrig, weil beispielsweise nur wenige andere Schüler*innen ebenfalls nicht erfolgreich waren, die Konsistenz hoch, weil das Individuum häufig schlechte Noten schreibt und die Distinktheit niedrig, weil es in anderen Bereichen auch schlechte Noten zeigt, wird das Individuum diesen Misserfolg eher auf internale Ursachen, wie mangelnde Fähigkeiten zurückführen. Im entgegengesetzten Fall bei hohem Konsensus, niedriger Konsistenz und hoher Distinktheit würde es eher external variable Ursachen annehmen, wie eine zu schwierige Klassenarbeit. Als Beispiel für die Auswirkungen leistungsbezogener Informationen auf die Attributionen, konnten Sit et al. (2016) zeigen, dass Sitzenbleiber eher ungünstige externale Attributionen für Misserfolge in Mathematik vornehmen.
Neben diesen internen Reflexionen über die eigene Leistung kann auch das Verhalten der Lehrkraft bestimmte Attributionen begünstigen. Es konnte beispielsweise gezeigt werden, dass unaufgeforderte Hilfe und Lob bei relativ einfachen Aufgaben von Schüler*innen und ihren Mitschüler*innen als Anzeichen mangelnder Fähigkeit interpretiert werden kann, vergleichbare Effekte zeigten sich, wenn Lehrkräfte bei Misserfolg Sympathie zeigen (vgl. Graham und Taylor 2016).
Hinsichtlich der Wirkungen von Kausalattributionen lassen sich Zusammenhänge mit motivationalen Variablen und akademischen Leistungen nachweisen. Ursachenzuschreibungen beeinflussen die Erwartungen, mit denen Schüler*innen an zukünftige Aufgaben gehen. Dabei lässt sich zeigen, dass im Erfolgsfall stabile Ursachenzuschreibungen dazu führen, dass die Erwartungen für zukünftige Erfolge hoch sind, während sie bei Misserfolg dazu führen, dass Erfolgserwartungen und Anstrengung sinken (vgl. zusf. für die Mathematik: Shores und Smith 2010). Variable Ursachenzuschreibungen hingegen ermöglichen es Schüler*innen im Misserfolgsfall, weiterhin hohe Erwartungen zu haben (vgl. Weiner 2018). Stajkovic und Sommer (2000) konnten darüber hinaus nachweisen, dass internale, stabile und kontrollierbare Ursachenzuschreibungen für Erfolg einen positiven Einfluss auf die Selbstwirksamkeit nehmen. Bei Misserfolg stehen Attributionen auf Anstrengung im Zusammenhang mit höherer Selbstwirksamkeit (vgl. Hsieh und Schallert 2008). Ebenfalls für die Selbstwirksamkeit konnte Hsieh (2004) zeigen, dass im Erfolgsfall internale oder stabile Ursachenzuschreibungen external-variablen Attributionen überlegen sind und bei Misserfolg internale und variable Ursachen günstiger sind als stabile oder externale. Für das Selbstkonzept zeigt sich besonders die Dimension der Lokalität von Relevanz: Internal attribuierte Erfolge stärken das Selbstkonzept, während internal attribuierte Misserfolge dieses eher senken (vgl. Möller 2018). Für Leistungsvariablen konnte nachgewiesen werden, dass Attributionen auf externale Faktoren zu geringeren Leistungen führen (vgl. House 2006) als Attributionen auf internale oder kontrollierbare Ursachen (vgl. Connell 1985; You et al. 2011; Cortés Suárez 2004). Zusammenfassend scheinen im Erfolgsfall besonders internale, stabile und kontrollierbare Attributionen für motivationale Aspekte und erfolgreiches Lernen von Vorteil zu sein, während im Misserfolgsfall besonders internal-variable und kontrollierbare Ursachen angeraten sind.

2.2.4 Motivationale Aspekte von Schüler*innen mit Lernschwierigkeiten

Hinsichtlich motivationaler Aspekte wurde der Fokus in den vorherigen Abschnitten besonders auf das Selbstkonzept, die Selbstwirksamkeit und Kausalattributionen gesetzt. Für diese drei Bereiche lässt sich zeigen, dass Schüler*innen mit Lernschwierigkeiten besonderen motivationalen Bedingungen gegenüberstehen.
Jones et al. (1997) zeigen auf, dass Selbstwirksamkeitserwartungen für Schüler*innen mit Lernschwierigkeiten aufgrund zahlreicher vorangegangener Misserfolge eine Hürde darstellen können. Lackaye et al. (2006) sowie Baird et al. (2009) konnten zeigen, dass Schüler*innen mit Lernschwierigkeiten eine geringere Selbstwirksamkeit und weniger Zuversicht auf Erfolg haben. Hampton und Mason (2003) konnten nachweisen, dass dieser Effekt über den mangelnden Zugang zu Quellen der Selbstwirksamkeit moderiert wird. In einem Review zu dem Zusammenhang von Lernschwierigkeiten und Selbstwirksamkeitsüberzeugungen fand Klassen (2002) allerdings auch einige Studien, die davon berichten, dass Schüler*innen mit Lernschwierigkeiten dazu tendieren, ihre Fähigkeiten zu überschätzen und eine höhere Selbstwirksamkeit zu zeigen als aufgrund der vorhandenen Fähigkeiten zu erwarten gewesen wäre. Siefer et al. (2020) stellen in ihrer Studie fünf unterschiedliche Kompetenzprofile bei Schüler*innen heraus: Leistungsstarke Schüler*innen, die ihre Leistung richtig einschätzen, Leistungsstarke Schüler*innen, die sich unterschätzen, durchschnittliche Schüler*innen, die sich unterschätzen, leistungsschwache Schüler*innen, die sich leicht überschätzen und leistungsschwache Schüler*innen, die sich stark überschätzen. Eine unreflektierte reine Steigerung der Selbstwirksamkeit ohne Veränderung der Kompetenzen scheint demnach gerade für leistungsschwache Schüler*innen nicht angemessen.
Hinsichtlich des Selbstkonzepts zeichnen sich ebenfalls Nachteile für Schüler*innen mit Lernschwierigkeiten ab (vgl. Tabassam und Grainger 2002; Zeleke 2004; Bear et al. 2002). Da das Selbstkonzept von vorangehenden Leistungen und interindividuellen Leistungsvergleichen abhängig ist und diese bei Schüler*innen mit Lernschwierigkeiten eher negativ ausfallen, ist dieser Effekt erwartbar. Die Tendenz der Überschätzung bei der Einschätzung eigener Fähigkeiten von Schüler*innen mit Lernschwierigkeiten zeigt sich auch im Selbstkonzept. Hier konnten Meltzer et al. (1998) zwar zeigen, dass die Einschätzungen der Schüler*innen mit Lernschwierigkeiten geringer waren als die ihrer Mitschüler*innen, allerdings eine deutliche Diskrepanz zu den Einschätzungen der assoziierten Lehrkräfte aufwiesen.
Für Kausalattributionen hat Chapman (1988) gezeigt, dass Schüler*innen mit Schwierigkeiten beim Lernen ihre geringen Fähigkeiten als stabil betrachten und geringe Erwartungen auf Erfolge in der Zukunft aufweisen. Baird et al. (2009) konnten nachweisen, dass Schüler*innen mit Lernschwierigkeiten seltener günstige Attributionen auf die internal variable Ursache Anstrengung anführen. Sideridis (2009) und González-Pienda et al. (2000) berichtet davon, dass Schüler*innen mit Lernschwierigkeiten Erfolge eher external auf Glück attribuieren und Misserfolge eher internal auf mangelnde Fähigkeiten. Vergleichbar nachteilige Attributionstendenzen bei Schüler*innen mit Lernschwierigkeiten finden auch Tabassam und Grainger (2002), Ring und Reetz (2000) sowie Pasta et al. (2017).
Insgesamt zeigen Schüler*innen mit Lernschwierigkeiten in allen drei der betrachteten motivationalen Konstrukte deutliche Nachteile gegenüber ihren Mitschüler*innen. Diese ungünstigen Voraussetzungen bedingen den Lernprozess negativ. So verstärken sich mangelnde Kompetenz und ungünstige Ausprägungen in den motivationalen Variablen gegenseitig in einer Negativspirale. Niedrige Selbstwirksamkeit und Selbstkonzept schwächen die Anstrengungsbereitschaft bei der Auseinandersetzung mit Mathematik. Dies kann zu schlechteren Verarbeitungen der mathematischen Inhalte führen, die sich wiederum in geringeren Kompetenzen niederschlagen. So steigt die Wahrscheinlichkeit für mathematikbezogene Misserfolge im Unterricht. Diese werden von Schüler*innen mit Lernschwierigkeiten eher auf problematische Ursachen, wie die eigenen Fähigkeiten zurückgeführt, wodurch Selbstwirksamkeit und Selbstkonzept weiter sinken könnten. Für die Förderung von Schüler*innen mit Lernschwierigkeiten scheint es daher angeraten, sowohl den mathematischen Kompetenzaufbau zu unterstützen als auch parallel motivationale Aspekte zu fördern.

2.3 Kriterien der Unterrichtsqualität für das Unterrichten von Schüler*innen mit Lernschwierigkeiten

Im Rahmen der COACTIV-Studie wurden auf Basis einer vergleichbaren Charakterisierung schulischen Lernens (vgl. Abschnitt 2.1.2) drei Dimensionen der allgemeinen Unterrichtsqualität ausgeführt (vgl. Kunter und Voss 2011):
1.
Effizienz der Klassenführung
 
2.
Kognitive Aktivierung
 
3.
Konstruktive Unterstützung
 
Kunter und Voss (2011) konnten im Rahmen der COACTIV-Studie zeigen, dass die Kriterien der Effizienz der Klassenführung und der kognitiven Aktivierung Vorhersagen der Mathematikleistung der Schüler*innen ermöglichen. Schukajlow und Krug (2014) und Schukajlow und Rakoczy (2016) konnten exemplarisch zeigen, dass durch kognitiv aktivierende Aufgaben in Form von unterbestimmten Modellierungsaufgaben, für die mehrere Lösungswege entwickelt werden sollten und Annahmen getroffen werden mussten, auch motivational-emotionale Variablen wie das Interesse, Kompetenzerleben und Freude gefördert werden können. Das Kriterium der konstruktiven Unterstützung nimmt im Rahmen der COACTIV-Studie einen positiven Einfluss auf motivational-emotionale Kriterien, wie Freude und geringe Ängstlichkeit (vgl. Kunter und Voss 2011). Für die Freude zeigte sich auch die Dimension der Klassenführung als Prädiktor.
Gold (2016) ergänzt für den Unterricht mit Schüler*innen mit Lernschwierigkeiten ein viertes Kriterium, das bei Kunter und Voss (2011) unter der konstruktiven Unterstützung zu finden ist:
4. Adaptivität
Im Folgenden werden die vier Kriterien näher charakterisiert und ihre Relevanz für Schüler*innen mit Lernschwierigkeiten dargestellt. Unter Berücksichtigung des Fokus dieser Arbeit werden die Dimensionen der Klassenführung und der kognitiven Aktivierung nur kurz beschrieben.
Die Effizienz der Klassenführung bezeichnet die Bemühungen einer Lehrkraft im Kontext komplexer sozialer Unterrichtsstrukturen, die Zeit möglichst effektiv für das Lernen zu nutzen und nicht lernbezogene Tätigkeiten zu minimieren (vgl. Kunter und Voss 2011). Das Ermöglichen eines hohen Anteils echter Lernzeit in einer Unterrichtsstunde gilt als zentrale Voraussetzung für effektives schulisches Lernen für Schüler*innen mit und ohne Lernschwierigkeiten (vgl. z. B. Brophy 2006; Seidel und Shavelson 2007). Helmke (2017) integriert unter dem Begriff der Klassenführung „präventive, proaktive und reaktive Elemente“, legt aber den Fokus auf die Prävention von Unterrichtsstörungen, die die Lernzeit reduzieren. In der Unterrichtsforschung hat sich herausgestellt, dass es verschiedene Wege gibt, dieses Ziel zu erreichen, beispielsweise über Regeln und Routinen, den Aufbau einer konstruktiven Beziehung zwischen Lehrkraft und Schüler*in, eine interessante und strukturierte Unterrichtsgestaltung oder disziplinäre Maßnahmen (vgl. Bear 2014, Emmer et al. 2003; Lenske und Mayr 2015). Durch effiziente Klassenführung wird die aktive Lernzeit unabhängig von der Qualität der Lernprozesse erhöht. Für die Qualität dieser Lernprozesse ist das folgende Kriterium von besonderer Bedeutung.
Das Potential einer Lernumgebung verständnisvolle und tiefgehende Lernprozesse anzuregen, wird mit dem Begriff Kognitive Aktivierung bezeichnet (vgl. Kunter und Voss 2011). Diese Lernprozesse werden besonders in der Auseinandersetzung mit Lerninhalten auf einem optimalen Niveau angeregt und sind dementsprechend stark von dem jeweiligen Fähigkeitsniveau der Lernenden abhängig (vgl. Leuders und Holzäpfel 2011). Um dieses Potential zu entfalten werden in der Literatur Maßnahmen auf zwei Ebenen diskutiert: Die Auswahl von anspruchsvollen Aufgaben und die Implementation dieser Aufgaben in den Unterricht (vgl. Kunter und Voss 2011). Anspruchsvolle Aufgaben sind vor diesem Hintergrund komplexe Aufgaben, die nicht sofort durch bereits vorhandenes Wissen gelöst werden können und die es Schüler*innen ermöglichen, bestehende Wissensstrukturen mit neuen zu verknüpfen oder diese auf neue Sachverhalte anzuwenden. Dies sind in der Regel Aufgaben mit mehreren Lösungswegen, mit kognitiven Konflikten, mit einer Aktivierung von Grundvorstellungen oder mit der Notwendigkeit zur Suche nach nicht vorliegenden Informationen (vgl. Kunter und Trautwein 2013; Leuders und Holzäpfel 2011; Neubrand et al. 2011). Eine kognitiv aktivierende Implementation von Aufgaben zeichnet sich dadurch aus, dass die Lehrkraft Prozesse initiiert, in denen die Schüler*innen herausgefordert werden, selbstständig die Gültigkeit ihrer Lösungsvorschläge zu überprüfen, unterschiedliche Lösungswege zu finden und erläutern, zu diskutieren und zu begründen, Widersprüche und Konflikte zu thematisieren und verschiedene Aspekte des Lerninhalts zu reflektieren (vgl. Kunter und Trautwein 2013). Bei Schüler*innen mit niedrigeren Kompetenzen lässt sich beobachten, dass Lehrkräfte, vermutlich aus Angst sie zu überfordern, eher Aufgaben mit einem niedrigen kognitiven Potential anbieten (vgl. Kunter und Voss 2011; Kunter und Trautwein 2013). Gold (2015) betont vor diesem Hintergrund, dass es gerade bei Schüler*innen mit geringen Fähigkeiten und Vorkenntnissen besonders wichtig ist, sie kognitiv zu aktivieren, „damit ihre Lernprozesse überhaupt in Gang gesetzt werden“ (S. 65). Scherer et al. (2016) betonen vor diesem Hintergrund die Bedeutung entdeckenden Lernens gerade für Schüler*innen mit Schwierigkeiten beim Mathematiklernen. Damit auch Schüler*innen mit geringen Vorkenntnissen und Lernschwierigkeiten auf einem möglichst hohen Niveau Lernen können, benötigen sie eine konstruktive Unterstützung.
Maßnahmen der konstruktiven Unterstützung sind Hilfestellungen auf inhaltlicher und motivationaler Ebene, die „dazu beitragen, individuelle Lernprozesse zu optimieren“ (Gold 2015, S. 79). Für die inhaltliche Unterstützung kann auf die Literatur zum Scaffolding Rückgriff genommen werden (vgl. zusf. Bakker et al. 2015). Der Ansatz des Scaffolding geht auf Vygotskys (2012) Konzept der Zone der nächsten Entwicklung zurück, mit der Vygotsky den Fähigkeitsbereich bezeichnet, der sich zwischen dem aktuellen Leistungsstand und der möglichen Entwicklung liegt. Hier sollen Lernende mit Unterstützung beispielsweise durch Lehrkräfte dazu angeregt werden, in der Entwicklung den nächsten Schritt voranzuschreiten und Probleme auf der nächsten Entwicklungsstufe zu bearbeiten. Die Unterstützungsbemühungen werden solange aufrechterhalten, bis die Lernenden die Probleme auf der neuen Entwicklungsstufe selbstständig lösen können (vgl. Puntambekar und Hubscher 2005). In diesem Sinne formulieren Simons und Klein (2007):
„Scaffolds should function including constraining efforts, focusing attention on relevant features to increase the likelihood of the learner’s effective action, and modeling advanced solutions or approaches“ (S. 45).
Puntambekar und Hubscher (2005) ergänzen drei weitere Aspekte des Scaffolding: ein gemeinsames Verständnis des Unterrichtsziels und der Aufgabe, prozessbezogene Diagnose, um die Hilfen adaptiv anpassen zu können und das sogenannte Fading, was einen Abbau der Hilfestellungen meint, sobald diese nicht mehr benötigt werden. Die zentralen Aspekte inhaltlicher Unterstützung umfassen demnach eine klare Strukturierung und Zieltransparenz im Unterricht sowie ein adaptives Unterstützungssystem, das es Schüler*innen ermöglicht, mit hoher Wahrscheinlichkeit Erfolge zu verzeichnen. Dieses Unterstützungssystem zeichnet sich durch eine Aufmerksamkeitslenkung auf zentrale Elemente sowie das Vormachen und Reflektieren von Lösungen und Lösungswegen aus und kann abgebaut werden, sobald die Lernenden ohne Hilfestellungen zurechtkommen (vgl. ebd.).
Für die klare Strukturierung und Zieltransparenz konnte der Zusammenhang eines klar strukturierten Unterrichts mit der Leistung und motivationalen Aspekten von Schüler*innen nachgewiesen werden (vgl. Rakoczy et al. 2007). Rakoczy et al. (2010) konnten zeigen, dass die klare Strukturierung insbesondere für Schüler*innen mit geringen Vorkenntnissen bedeutsam ist (vgl. auch Gold 2016; Bruder 2008). Drei Studien berichten darüber hinaus von positiven Effekten von Scaffolding-Interventionen auf das Lösen von Textaufgaben (vgl. Kajamies et al. 2010) oder Modellierungsaufgaben (vgl. Schukajlow et al. 2015) und auf eine Lerneinheit zu Wahrscheinlichkeiten (vgl. Roll et al. 2012).
Konstruktive Unterstützungen auf motivationaler Ebene umfassen Maßnahmen zum Umgang mit Fehlern, die Gestaltung einer Lehrkraft-Lernenden-Beziehung und das Geben von Feedback (vgl. Kunter und Voss 2011). Fehler die Schüler*innen im Unterricht machen, werden von diesen und ihren Mitschüler*innen in der Regel als Misserfolg wahrgenommen. Um das lernwirksame Potential von Fehlern entfalten zu können (vgl. Prediger und Wittmann 2009; Helmke 2017), gilt es, ein fehlerfreundliches Lernklima zu etablieren, das sich dadurch auszeichnet, dass Fehler als Lerngelegenheiten begrüßt und nicht defizitär wahrgenommen werden (vgl. Kunter und Trautwein 2013; Oser und Spychiger 2005; Steuer 2014). Steuer (2014) konnte einen kleinen Zusammenhang eines positiven Fehlerklimas mit den mathematischen Leistungen von Schüler*innen nachweisen. Eine konstruktiv unterstützende Beziehung zwischen Lehrkraft und Schüler*innen zeichnet sich unter anderem durch Geduld, Empathie, Wertschätzung und das Vermeiden von Kränkungen aus (vgl. z. B. Davis 2003; Koca 2016). Für die Lehrkraft-Lernenden-Beziehung konnte Cornelius-White (2007) in einer Meta-Analyse positive Zusammenhänge zu kognitiven wie motivationalen Schüler*innenmerkmalen nachweisen (vgl. auch Quin 2017). Rückmeldungsprozesse sind nach Hattie (2009) einer der zentralsten Faktoren für den Erfolg von Unterricht. Beim Feedback von Lehrkräften werden einfache Feedbackaussagen, in denen nur die Information über die Richtigkeit einer Lösung oder eines Lösungsweges geliefert wird, von ausführlicheren Formen unterschieden, die zusätzliche Informationen wie Lern- und Lösungsstrategien bereitstellen (vgl. Kunter und Trautwein 2013). Lipowsky (2015) zeigt zusammenfassend auf, dass das ausführlichere Feedback einen positiven Einfluss auf die Leistung nimmt, während die reine Information über die Richtigkeit keinen Effekt hat. Hattie und Timperley (2007) unterscheiden bei den ausführlicheren Formen prozessbezogenes Feedback (‚Du hast an dieser Stelle das falsche Lösungsverfahren angewandt, probiere es mit Verfahren XY‘), selbstregulationsbezogenes Feedback (‚Überprüfe dein Ergebnis mit dem Probe-Verfahren aus der letzten Stunde‘) und persönliches Feedback (‚Du bist ein guter Schüler‘). Hier konnte gezeigt werden, dass sich besonders prozessbezogenes Feedback und selbstregulationsbezogenes Feedback positiv auf den Lernerfolg auswirken und für personenbezogenes Feedback eher keine Auswirkungen nachgewiesen wurden (vgl. auch Drechsel und Schindler 2019). Rakoczy et al. (2013) konnten zeigen, dass sich prozessbezogenes Feedback dann positiv auf Lernerfolg und Schüler*inneninteresse auswirkt, wenn es als nützlich und unterstützend wahrgenommen wird. Nach Hattie und Timperley (2007) sollte Feedback zu folgenden drei Bereichen Informationen enthalten: Lernziel, aktueller Lernstand und Strategien zur Erreichung des Ziels.
Vor dem Hintergrund der motivationalen Nachteile der Schüler*innen mit Lernschwierigkeiten sollten Maßnahmen zur konstruktiven Unterstützung auf motivationaler Ebene besonders geeignet sein, diese Schüler*innengruppe zu unterstützen.
Unter adaptiven Unterricht versteht man einen auf die individuellen Lernvoraussetzungen der Schüler*innen angepassten Unterricht, um im Sinne der vorangegangenen Qualitätskriterien allen Schüler*innen ein erfolgreiches Lernen zu ermöglichen. Da die Lernvoraussetzungen nicht bei allen Schüler*innen gleich sind, gilt es diesem Anspruch über Differenzierungsmaßnahmen gerecht zu werden (vgl. Paradies und Linser 2017). Hier werden Maßnahmen auf unterschiedlichen Ebenen unterschieden: Differenzierung hinsichtlich des Lernziels, der Lernzeit und der Methoden. Lernzieladaptiver Unterricht ermöglicht es Schüler*innen, Leistungen auf unterschiedlichen Niveaus erbringen zu dürfen. Nicht alle Schüler*innen einer Klasse können das gleiche Kompetenzniveau erreichen. Groeben (2013) schlägt daher vor, Kompetenzniveaus zwischen dem Fundamentum, das einem Mindeststandard entspricht, den alle Schüler*innen erreichen müssen, um sinnvoll weiterarbeiten zu können, und einem Additum, das Wahlaufgaben auf unterschiedlichen Niveaus umfasst, anhand derer Schüler*innen sich weitere Kompetenzen aneignen können, zu unterscheiden. Schüler*innen mit Lernschwierigkeiten können die zur Verfügung stehende Lernzeit dafür nutzen, den Mindeststandard zu erreichen, während starke Schüler*innen an für sie angemessenen Aufgaben nach oben nicht begrenzt sind. Unterricht ist adaptiv hinsichtlich der Lernzeit, wenn Schüler*innen, die mehr Zeit benötigen, diese auch bekommen und Schüler*innen, die Aufgaben schneller bearbeiten und verstehen, keine unnötigen Wartezeiten haben. Für die Schüler*innen mit Lernschwierigkeiten ist es vor dem Hintergrund der ineffektiveren kognitiven Verarbeitung von Informationen (vgl. Abschnitt 2.1.2) von besonderer Wichtigkeit, ausreichend Zeit zu bekommen, um sich mit den Inhalten auseinanderzusetzen (vgl. Gold 2016). Methodisch werden sowohl Lernziel- als auch Lernzeitadaptivität beispielsweise über Wochenplanarbeit, Lerntheken, Stationenarbeit oder vergleichbare Lernarrangements ermöglicht (vgl. z. B. Castelli et al. 2016). Eine Differenzierung über Aufgaben wird beispielsweise von Salle et al. (2014), Büchter und Leuders (2016) oder Bruder (2006) beschrieben. Es ist zu beachten, dass sich in solchen selbstdifferenzierenden Settings nicht automatisch ein niveauangemessenes Arbeiten im Sinne der kognitiven Aktivierung etabliert (vgl. Prediger und Scherres 2012). Dieses gilt es durch entsprechende Unterstützungsmaßnahmen zu sichern. Grünke (2006) konnte zeigen, dass Schüler*innen mit Lernstörungen besser mit stärker angeleiteten Methoden mit größerem Instruktionsanteil arbeiten können. Gold (2016) ergänzt den Aspekt eines hohen Anteils an Übungen und Wiederholungen als günstig für Schüler*innen mit Lernschwierigkeiten.
Zusammenfassend gelten die Kriterien der Unterrichtsqualität nach Kunter und Voss (2011) insbesondere auch für das Unterrichten von Schüler*innen mit Lernschwierigkeiten. Als besonders bedeutsam wurden eine ausgeprägte konstruktive Unterstützung, klare Struktur, adaptiver Unterricht und eine kognitive Aktivierung herausgestellt.

2.4 Zusammenfassung und Modellentwicklung: Förderung mathematischer Leistung und individueller Motivation bei Schüler*innen mit Schwierigkeiten beim Mathematiklernen

Fasst man die Ergebnisse der vorangegangenen Abschnitte zusammen, lassen sich daraus empirisch fundierte Grundsätze für die Förderung mathematischer Leistung und individueller Motivation bei Schüler*innen mit Lernschwierigkeiten ableiten. Übergreifendes Ziel einer solchen Förderung ist das Durchbrechen der Negativspirale von Kompetenz und Motivation im Sinne ungünstiger Ausprägungen in den beschriebenen motivationalen Variablen. Die Maßnahmen zielen also auf inhaltlich-mathematische und auf motivationale Aspekte.
Auf der inhaltlich-mathematischen Ebene sollte das Ziel einer solchen Förderung darin liegen, die noch nicht sicher beherrschten Inhalte des Basisstoffs aus der Grundschulmathematik, die für viele Inhalte benötigt werden, aufzubauen, bevor der aktuelle Stoff bearbeitet wird (vgl. Scherer et al. 2016). Eine Liste von wichtigen Basisinhalten von Moser Opitz (2013) wurde in Abschnitt 2.1.3 vorgestellt. Besonders relevant sind dabei der Wechsel von Darstellungsebenen und die Deutung von Zahlen und Operationen. Ein solcher Fokus auf mathematischen Basisstoff ist auch für Schüler*innen in der Sekundarstufe I von Bedeutung, die ebenfalls oft noch Probleme im Bereich der Inhalte der Primarstufe haben (vgl. Hettmann und Tiedemann 2022). Neben dem Aufbau inhaltlicher Elemente sollte der Fokus auf nutzvolle Lern- und Lösungsstrategien gesetzt werden (vgl. Scherer et al. 2016). Überzeugende, mathematikdidaktisch fundierte Interventionen zur Aufbereitung des mathematischen Basisstoffs und zum Aufbau angemessener Rechenstrategien haben Selter et al. (2014) im Rahmen des Projekts Mathe sicher können und Häsel-Weide et al. (2014) vorgelegt. Grundlegende Voraussetzung für eine solche Förderung ist eine konsequente Diagnose und Berücksichtigung des Vorwissens der Schüler*innen.
Auf der motivationalen Ebene ist das Ziel der Förderung der Aufbau von Selbstwirksamkeit, Selbstkonzept und günstigen Kausalattributionen. Dies geschieht im besonderen Maße, wenn Lernsituationen so gestaltet werden, dass sie den Schüler*innen regelmäßige selbstbewirkte Erfolgserlebnisse und das Erleben von Kompetenz ermöglichen. Dazu ist es vorteilhaft, wenn herausfordernde, an das Fähigkeitsniveau der Schüler*innen angepasste, Aufgaben und Anforderungen gestellt werden. Sind die Aufgaben und deren Implementation in den Unterricht darüber hinaus kognitiv aktivierend, können die Schüler*innen einerseits die mathematischen Defizite abbauen und gleichermaßen Erfolge erleben. Dieser Prozess der Überwindung von herausfordernden Hindernissen durch die Schüler*innen kann durch konstruktive inhaltliche und motivationale Unterstützung begleitet werden. Für Schüler*innen mit Schwierigkeiten beim Lernen sind auf inhallicher Ebene entsprechend der Ansätze zum Scaffolding (vgl. Puntambekar und Hubscher 2005; Simons und Klein 2007) besonders strukturierende, aufmerksamkeitslenkende Hilfestellungen, eine Unterstützung der Arbeitsgedächtnisfunktionen sowie die Modellierung elaborierter Lösungswege wichtig. Unterstützungen auf motivationaler Ebene umfassen die selbstwirksamkeitsförderliche Verarbeitung von Fehlern, eine konstruktiv unterstützende Lehrkraft-Lernenden-Beziehung sowie Feedbackprozesse. Um eine günstige Verarbeitung der Erfahrungen sicherzustellen, sollten die regelmäßigen Erfolgserlebnisse von der Lehrkraft rückgemeldet und gemeinsam mit den Schüler*innen nachbereitet werden. Hier gilt es, die oft ungünstigen Ursachenzuschreibungen der Schüler*innen für Erfolg und Misserfolg durch angemessene Formen zu ersetzen. Im Erfolgsfall sind dies internal stabile und kontrollierbare Ursachenzuschreibungen und im Misserfolgsfall internal variable und kontrollierbare (vgl. Abschnitt 2.2.3).
Aus der methodischen Perspektive gilt es möglichst viel Zeit für die Verarbeitung neuer Inhalte zur Verfügung zu stellen, da Schüler*innen mit Schwierigkeiten beim Lernen für die Verarbeitung und Speicherung von Informationen mehr Zeit benötigen. Diese kann im Rahmen von externem Förderunterricht oder im adaptiven Unterricht generiert werden. In beiden Fällen wird die Lernzeit durch eine effiziente Klassenführung erhöht.
Die beschriebenen Grundsätze beschreiben ein umfassendes Modell (s. Abbildung 2.3), das für die mathematische und motivationale Förderung von Schüler*innen mit Schwierigkeiten beim Mathematiklernen genutzt werden kann. Es vereinigt zahlreiche empirisch fundierte Ansätze der Mathematikdidaktik, der Unterrichtsforschung und der Motivationspsychologie.

2.5 Mögliche theoretische Erweiterungen des Modells zur Förderung mathematischer Leistung und individueller Motivation bei Schüler*innen mit Schwierigkeiten beim Mathematiklernen

Das Motivationsgeschehen von Schüler*innen und auch die mathematikdidaktische und psychologische Forschung dazu ist komplexer als die bisherigen Ausführungen andeuten. Die ausgewählten Konstrukte Selbstwirksamkeit, Selbstkonzept und Kausalattributionen haben eine hohe Erklärungskraft und Bedeutung für verschiedene pädagogische Situationen, insbesondere für Schüler*innen mit Schwierigkeiten beim Mathematiklernen, haben jedoch blinde Flecken, die unberücksichtigt bleiben (vgl. Krapp und Ryan 2002). Neben den in dieser Arbeit betrachteten Konstrukten sind in der aktuellen mathematikdidaktischen Forschung ebenfalls zwei motivationsbezogene Ansätze prominent (vgl. Schukajlow et al. 20175): Die Selbstbestimmungstheorie (vgl. Ryan und Deci 2004) und die Interessenstheorie (vgl. Krapp 2018). Im Folgenden werden ein kurzer Einblick in die entsprechenden Theorien gegeben.
In der Selbstbestimmungstheorie unterscheiden Deci und Ryan (2004b) intrinsische Motivation, die sich aus dem Erleben im Handlungsvollzug selbst speist, von unterschiedlich autonomen Formen extrinsischer Motivation, die sich durch unterschiedliche Grade an Identifikation mit der anstehenden Aufgabe auszeichnen. Sie erweitern damit Ansätze, wie den der Selbstwirksamkeit, die den Fokus auf die Stärke der Motivation setzen um eine Qualitätskomponente, die verdeutlicht, aus welchem Grund eine Person etwas tut (vgl. Krapp und Ryan 2002; Eccles und Wigfield 2002). Des Weiteren postuliert die Selbstbestimmungstheorie drei psychologische Grundbedürfnisse nach Autonomie, Kompetenzerleben und sozialer Eingebundenheit (vgl. Deci und Ryan 2004b). Sie ergänzen damit den Wunsch nach dem Erleben von Kompetenz, der sich wie die Selbstwirksamkeit auf das Gefühl bezieht, „dass man mit seinem eigenen Verhalten etwas bewirken kann und sich in der Lage sieht, den vorgegebenen oder selbstgewählten Anforderungen gerecht werden zu können“ (Krapp und Ryan 2002, S. 72), um zwei weitere Bedürfnisse: Das Bedürfnis nach Autonomie beschreibt den Wunsch eines Individuums, die Verursachung eigener Handlungen in sich selbst verortet zu sehen und über eigene Tätigkeiten bestimmen zu können (vgl. Deci und Ryan 2004b). Das Bedürfnis nach sozialer Eingebundenheit beschreibt den Wunsch, mit anderen Individuen in Beziehung zu stehen sowie warme und sichere emotionale Bindungen aufzubauen (vgl. ebd.). Durch diese Hinzunahme weiterer Grundbedürfnisse können Phänomene der Motivationsentwicklung differenzierter beschrieben und analysiert werden.
In klassischen Erwartungs-Wert-Modellen werden Erfolgserwartungen und Wertabschätzungen unterschieden (vgl. Krapp und Ryan 2002; Krapp 2018). Während sich die Selbstwirksamkeitstheorie besonders mit dem Erwartungsaspekt befasst und die Wertkomponente eine untergeordnete Rolle hat, wird in der Interessenstheorie eine Person-Gegenstands-Beziehung modelliert, die sich durch eine besondere Wertschätzung des Gegenstands auszeichnet (vgl. Hidi und Renninger 2006; Krapp 2018). Diese Wertschätzung ist gepaart mit positivem Erleben bei der Auseinandersetzung mit dem Interessensgegenstand. Das Interessenskonstrukt hat dabei Zusammenhänge mit verschiedenen bedeutsamen Schüler*innenvariablen, wie der Zielsetzung (vgl. Harackiewicz et al. 2008), der Ausdauer (vgl. Ainley et al. 2002), der Selbstregulation (vgl. Pintrich 1999) und der Leistung (vgl. Heinze et al. 2005). Hidi und Renninger (2006) nehmen an, dass überdauernde Interessen aus situationalem Interesse resultieren, welches wiederum durch verschiedene Interventionen beispielsweise im Rahmen von Mathematikunterricht hervorgerufen werden kann. Wie in der Selbstbestimmungstheorie wird in der Interessenstheorie angenommen, dass die Befriedigung der Bedürfnisse nach Autonomie, Kompetenzerleben und sozialer Eingebundenheit einen Einfluss auf diese Interessensentwicklung nehmen (vgl. Krapp und Ryan 2002). Das Kompetenzerleben scheint dabei von besonderer Wichtigkeit zu sein. So konnten Rakoczy et al. (2013) zeigen, dass Feedback, mediiert über die Kompetenzwahrnehmung der Schüler*innen, einen positiven Zusammenhang zur Interessensentwicklung aufweist. Schukajlow und Krug (2014) konnten bei einer Intervention, in der Schüler*innen multiple Lösungen für Modellierungsaufgaben produzieren sollten, ebenfalls nachweisen, dass die positiven Effekte der Intervention auf das Interesse über das Kompetenzerleben mediiert werden. Es ist demnach nicht überraschend, dass sich der Big-Fish-Little-Pond-Effekt auch für das Interesse nachweisen lässt (vgl. Trautwein et al. 2006). Umfassende Darstellungen zur Förderung von Interesse liefern beispielsweise Schulze Elfringhoff und Schukajlow (2021), sowie Renninger und Hidi (2016).
Das geschilderte Modell (s. Abbildung 2.3) ließe sich den vorangegangenen Ausführungen folgend unter Berücksichtigung der Selbstbestimmungstheorie und der Interessenstheorie besonders mit einem Fokus auf das Kompetenzerleben weiter ausdifferenzieren. Da sich die Zielgruppe der Schüler*innen mit Schwierigkeiten beim Lernen besonders durch Defizite in den Bereichen der Selbstwirksamkeit, des Selbstkonzepts und der Kausalattributionen auszeichnet, scheint die Fokussierung in dieser Arbeit auf diese Ansätze jedoch weiterhin angemessen. Das Modell bietet eine Grundlage für das Herausarbeiten von Herausforderungen, denen (angehende) Mathematiklehrkräfte bei der Förderung von Schüler*innen mit Schwierigkeiten beim Lernen gegenüberstehen. Die hinter der Bewältigung dieser Herausforderungen stehenden Kompetenzen, sind Gegenstand des folgenden Kapitels. Aus der Perspektive der Lehrer*innenbildung ist es bedeutsam diese Kompetenzen zu modellieren und Möglichkeiten für deren Entwicklung zu untersuchen.
Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0 International Lizenz (http://​creativecommons.​org/​licenses/​by/​4.​0/​deed.​de) veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.
Fußnoten
1
Kompetenz umfasst im Verständnis dieser Arbeit sowohl kognitive als auch affektiv-motivationale Aspekte (vgl. Kapitel 3 zu Lehrer*innenkompetenzen).
 
2
Der in diesem Kontext häufig verwendete Begriff der Dyskalkulie bezeichnet eine mathematikbezogene Lernstörung.
 
3
Die Forschungslandschaft zu motivationalen Aspekten ist so umfangreich, dass eine Schwerpunktsetzung unabdingbar ist. In dieser Arbeit werden die drei beschriebenen Konstrukte fokussiert, da deren Bedeutung für den Kontext der Förderung von Schüler*innen mit Schwierigkeiten beim Lernen vielfach belegt wurde (vgl. Abschnitt 2.2.4). Ein Einblick in weitere in der Mathematikdidaktik bedeutsame Konstrukte wird in Abschnitt 2.5 gegeben.
 
4
Bei der Einordnung von Ursachen in dieses Raster ist zu beachten, dass es um die Wahrnehmung des Individuums geht. Nimmt ein Individuum die eigenen Fähigkeiten als variabel wahr, müssten sie entsprechend bei internal-variablen Ursachen eingeordnet werden. Die folgenden Beispiele nehmen wahrscheinliche Interpretationen der einzelnen Ursachen an.
 
5
Schukajlow et al., 2017 stellen einen weiteren in der mathematikdidaktischen Forschung bedeutsam Ansatz heraus: Emotionen. Emotionen werden in dieser Arbeit nur randständig betrachtet, da der Fokus auf den motivationalen Aspekten liegt.
 
Metadaten
Titel
Mathematiklernen und Motivation bei Schüler*innen mit Lernschwierigkeiten
verfasst von
Maximilian Hettmann
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-658-37180-7_2