Skip to main content
main-content

Über dieses Buch

Der vorliegenden Band zeichnet sich durch eine große Bandbreite an Zugängen zum Themenkomplex „Digitales im Mathematikunterricht“ aus; diese reicht von Theorieartikeln zur Fundierung des Einsatzes digitaler Werkzeuge und Medien in der Mathematikdidaktik, über Anwendungsperspektiven für die Mathematiklehrerinnen- und Mathematiklehrerausbildung, bis hin zu aussagekräftigen Praxisberichten aus der Schule. Das nun entstandene Werk ist Ausdruck einer lebendigen multiperspektivischen Auseinandersetzung mit dem Gegenstand der digitalen Bildung in der Mathematikdidaktik. Diese wird im vorliegenden Buch getragen von einer positiven Grundeinstellung zu den Möglichkeiten, die digitale Werkzeuge und Medien für den Mathematikunterricht entfalten können, werden aber in kritischer Abwägung wissenschaftlich betrachtet um auszuloten wann, wo und wie ein Einsatz einen fachinhaltlichen und fachdidaktischen Mehrwert entfalten kann.

Inhaltsverzeichnis

Frontmatter

Empirisch-gegenständlicher Mathematikunterricht im Kontext digitaler Medien und Werkzeuge

Zusammenfassung
Digitale Medien und Werkzeuge sind aus einem zeitgemäßen Mathematikunterricht nicht mehr wegzudenken. Dabei kommt der mathematikdidaktischen Forschung die Aufgabe zu, Lehr-Lern-Prozesse in den entstehenden Unterrichtskontexten (mit digitalen Medien) kritisch zu hinterfragen und Konsequenzen für ein adäquates Mathematiklehren und -lernen zu identifizieren und zu formulieren. In diesem Artikel wollen wir daher diskutieren, inwiefern die Nutzung digitaler Medien und Werkzeuge einen empirisch-gegenständlichen Mathematikunterricht bedingen kann und inwiefern ein Arbeiten mit empirischen Objekten gefordert und gefördert werden sollte. Diskussionsleitend sind für diesen Artikel zwei Hypothesen, welche insbesondere (Schüler-) Auffassungen von Mathematik in den Blick nehmen.
Frederik Dilling, Felicitas Pielsticker, Ingo Witzke

Ein Schema zur kriteriengeleiteten Erstellung und Dokumentation von Lernumgebungen mit Einsatz digitaler Medien

Zusammenfassung
Seit dem Einzug der Digitalisierung in den Schulunterricht spielt die Bereitstellung von „quality digital educational content“ (Dutta et al., 2015, S.75) insbesondere zugeschnitten auf Lehrkräfte eine immer größere Rolle. Mittels Design Science Research wird ein Schema zur kriteriengeleiteten Erstellung und Dokumentation von Lernumgebungen mit Einsatz digitaler Medien entwickelt, welches insbesondere drei Funktionen erfüllen soll: die Funktion der Intensivierung des Planungsprozesses vor der Durchführung der Lernumgebung, die Bereitstellung eines „Gerüsts“ (Barzel et al., 2016, S.109) während der Durchführung und die Funktion als Dokumentation zur Ermöglichung eines Austauschs z. B. als Open Educational Ressources im Rahmen einer Community of Practice.
Melanie Platz

Mathematikdidaktische Reflexionen über den Einsatz dynamischer Geometriesoftware in der Lehramtsausbildung

Zusammenfassung
GeoGebra hat sich mittlerweile aufgrund seiner vielfältigen Anwendungsmöglichkeiten, der kostenlosen Nutzung und einer großen Community in allen Bereichen der Schulmathematik als digitales Werkzeug etabliert. Die häufigsten Nutzungsformen von GeoGebra sind wohl das umfassende Stand-alone-Programm als Desktop-Version oder einzelne GeoGebra Apps, die sowohl in Browsern als auch auf dem Smartphone nutzbar sind. Seit 2014 gibt es die Möglichkeit mehrere Aktivitäten und passende multimediale Inhalte in strukturierterer Form – ähnlich zu Lernpfaden – in Form von GeoGebra Büchern zusammenzufassen. In diesem Kapitel werden die Erfahrungen der Nutzung eines GeoGebra Buchs im Oberstufenunterricht der Q1 zur Wiederholung von Grundbegriffen und Entdeckung des Geradenbegriffs in der Linearen Algebra thematisiert. Dabei wird ein besonderer Schwerpunkt auf die Chancen und Herausforderungen des Einsatzes von GeoGebra Büchern im Unterricht zum eigenverantwortlichen Wiederholen mathematischer Inhalte von Schülerinnen und Schülern sowie auf Komponenten des „Noticings“ im Erfahrungsbereich „Computerraum & GeoGebra Buch“ eingegangenen.
Jochen Geppert

Punkte erzeugen Geraden – Chancen und Herausforderungen des Einsatzes von „GeoGebra Büchern“ in der Linearen Algebra

Zusammenfassung
GeoGebra hat sich mittlerweile aufgrund seiner vielfältigen Anwendungsmöglichkeiten, der kostenlosen Nutzung und einer großen Community in allen Bereichen der Schulmathematik als digitales Werkzeug etabliert. Die häufigsten Nutzungsformen von GeoGebra sind wohl das umfassende Stand-alone-Programm als Desktop-Version oder einzelne GeoGebra Apps, die sowohl in Browsern als auch auf dem Smartphone nutzbar sind. Seit 2014 gibt es die Möglichkeit mehrere Aktivitäten und passende multimediale Inhalte in strukturierterer Form – ähnlich zu Lernpfaden – in Form von GeoGebra Büchern zusammenzufassen. In diesem Kapitel werden die Erfahrungen der Nutzung eines GeoGebra Buchs im Oberstufenunterricht der Q1 zur Wiederholung von Grundbegriffen und Entdeckung des Geradenbegriffs in der Linearen Algebra thematisiert. Dabei wird ein besonderer Schwerpunkt auf die Chancen und Herausforderungen des Einsatzes von GeoGebra Büchern im Unterricht zum eigenverantwortlichen Wiederholen mathematischer Inhalte von Schülerinnen und Schülern sowie auf Komponenten des „Noticings“ im Erfahrungsbereich „Computerraum & GeoGebra Buch“ eingegangenen.
Gero Stoffels

Ein mathematisches Zeichengerät (nach)entwickeln – eine Fallstudie zum Pantographen

Zusammenfassung
Der Pantograph ist ein paradigmatisches Beispiel für ein historisches Zeichengerät, welches zum maßstäblichen Vergrößern und Verkleinern von Zeichnungen eingesetzt werden kann. Im Mathematikunterricht der Primarstufe eignet sich die Verwendung dieses analogen Zeichengerätes besonders im Themenbereich Maßstäbe bzw. zum maßstäblichen Vergrößern und Verkleinern ebener Figuren. Durch den Einsatz der 3D-Druck-Technologie können die Schülerinnen und Schüler den Pantographen eigenständig (nach)entwickeln und seine Funktionsweise handlungsorientiert erkunden. In einer Fallstudie wurde die Wissensaneignung von Schülerinnen und Schülern einer vierten Klasse im Umgang mit dem Pantographen auf Grundlage des Konzepts der empirischen Theorien untersucht.
Frederik Dilling, Amelie Vogler

Argumentieren – Wissen sichern und erklären

Zusammenfassung
Ein materialgebundenes und inhaltlich-anschauliches Arbeiten hat insbesondere im Mathematikunterricht der Grundschule eine zentrale Bedeutung. Durch den vermehrten Einsatz digitaler Medien werden weitere solcher Zugänge möglich. Neben stoffdidaktischen Überlegungen rücken dann insbesondere auch Fragen bzgl. einer Entwicklung mathematischen (Schüler-) Wissens in den Fokus. Entscheidende Fragen, die wir in diesem Artikel stellen, betreffen die Kompetenz des Argumentierens, welche wir mithilfe der Termini „Wissenssicherung“ und „Wissenserklärung“ in einem empirisch-orientieren Mathematikunterricht (Pielsticker, 2020) mit digitalen Medien präzisieren möchten. Mithilfe eines theoretischen und methodischen Hintergrunds basierend auf dem Ansatz empirischer Theorien zur Beschreibung erfahrungswissenschaftlichem (individuellem) (Schüler-) Wissens, diskutieren wir unser Fallbeispiel zur Begriffsentwicklung des geometrischen Körpers „Würfel“ im Mathematikunterricht einer 4. Klasse.
Felicitas Pielsticker, Amelie Vogler, Ingo Witzke

Authentische Problemlöseprozesse durch digitale Werkzeuge initiieren – eine Fallstudie zur 3D-Druck-Technologie

Zusammenfassung
Digitale Werkzeuge bieten im Unterricht die Möglichkeit, vielseitige Problemlöseprozesse zu initiieren. Dies soll in diesem Beitrag an einem Beispiel zur 3D-Druck-Technologie ausgeführt werden. Als theoretischer Hintergrund zum Problemlösen werden insbesondere die Arbeiten von George Pólya und Alan H. Schoenfeld angeführt. In einer Fallstudie wird auf dieser Grundlage der Problemlöseprozess einer Gruppe von drei Schülerinnen interpretativ analysiert. Die Schülerinnen entwickelten im Rahmen eines Workshops mit Hilfe der 3DDruck-Technologie eine sogenannte reduzierte Kupplung – einen Verbinder zwischen zwei Rohren mit unterschiedlichem Durchmesser.
Frederik Dilling

Elemente der Arithmetik verstehen lernen – professionsorientiert, vorstellungsbasiert und digital

Zusammenfassung
Grundschullehramtsstudiere zeichnen sich durch eine große Heterogenität in ihren mathematischen Leistungen aus. Manche sind Mathematik affin und auch leistungsstark, viele aber nicht. Das Projekt „Arithmetik digital“ hat es sich daher zur Aufgabe gemacht, mit Hilfe von wissenschaftlich fundiert gestalteten Erklärvideos dieser Heterogenität gerecht zu werden. Im Beitrag werden vor dem Hintergrund der angedeuteten problematischen Ausgangslage die zentralen professionsorientierten Designelemente, die bei der Gestaltung der Erklärvideos leitend waren, vorgestellt. Die adaptiven Einsatzmöglichkeiten und die Studierendenevaluationen verdeutlichen die Wirksamkeit dieses digitalen Lehrkonzepts.
Daniela Götze

Der Einsatz digitaler Videotechnik in der Lehrer*innenbildung – Drei Lernsettings für eine theoriebasierte Videoreflexion

Zusammenfassung
Im Kontext der Lehrer*innenbildung werden (Unterrichts)Videos bereits seit vielen Jahren mit den unterschiedlichsten Intentionen eingesetzt. Aufgrund der fortschreitenden Digitalisierung haben sich die Erstellung und die Verwendung von Videoaufnahmen deutlich vereinfacht. In den an Lehrer*innenbildung beteiligten Fachdisziplinen ist man sich darüber einig, dass ein bloßes Anschauen von (Unterrichts) Videos wenig gewinnbringend für (angehende) Lehrer*innen ist. Stattdessen wird die Einbindung von (Unterrichts)Videos in didaktisch durchdachten Lernsettings gefordert. Im Rahmen des fachdidaktischen Seminars MatheWerkstatt arbeiten Studierende in drei an der Universität Siegen entwickelten Lernsettings zur Videoreflexion. Nach einer Vorstellung der Seminarkonzeption sowie einer theoretischen Verortung der Reflexion in der Lehrer*innenbildung erfolgt eine Konkretisierung der drei Lernsettings zur Videoreflexion anhand konzeptioneller Überlegungen sowie Erfahrungen aus der Veranstaltung.
Eva Hoffart

Blockprogrammieren im Mathematikunterricht – ein Werkstattbericht

Zusammenfassung
Blockprogrammierung bietet aus unserer Sicht zahlreiche Möglichkeiten prozessbezogene Kompetenzen wie z. B. das Problemlösen in Verbindung mit einem Verständnis von Algorithmen zu fördern und zu fordern. Damit kann sie einen Einstieg in das Programmieren schon in der Grundschule ebnen als auch in der Sekundarstufe I ermöglichen und bietet durch die handlungsorientierten Lösungsschritte einen Zugang für nahezu jedes Leistungsniveau. Der Algorithmus kann in diesem Zusammenhang als eine fächerverbindende fundamentale Idee für den Mathematik- und Informatikunterrichts betrachtet werden, dessen Erarbeitung im Unterricht zu gegenseitigen Synergieeffekten führt. Dieser Artikel basiert auf persönlichen Unterrichtserfahrungen und soll dazu beitragen, das Potenzial der Blockprogrammierung für den Mathematikunterricht zu erkennen und Berührungsängste zu nehmen.
Fabian Eppendorf, Birgitta Marx

„Die Würfel auf dem Tablet waren aber anders“ – Zur Kontextgebundenheit des Wissens bei Stationenarbeiten mit Digitalen Medien

Zusammenfassung
Stationenlernen ist eine beliebte Methode im Mathematikunterricht der Grundschule. Das Anbieten von Stationen, die verschiedene Zugänge und Schwerpunkte zu einem Oberthema deutlich machen, ermöglicht ein ganzheitliches Lernen für alle Schülerinnen und Schüler. Gerade der Einsatz von digitalen Medien kann hierbei weitere Aspekte nutzbar machen und die vorhandenen analogen Stationen erweitern. Jedoch stellen die vielen verschiedenen Kontexte in den einzelnen Stationen eine Herausforderung für die Wissensentwicklung dar. Es stellt sich die Frage, ob die Schülerinnen und Schüler isolierte Begriffe entwickeln oder ob die verschiedenen Schwerpunkte miteinander in Beziehung gesetzt werden können. In der vorliegenden Studie wurde in einem dritten Schuljahr eine Stationenarbeit zum Thema Würfelgebäude unter anderem mit digitalen Medien (Tablet und PC) erprobt, um der Frage nachzugehen, inwieweit das erlernte Wissen der Schülerinnen und Schüler an die Kontexte der Erarbeitung gebunden ist und welche Rückschlüsse sich daraus für den Einsatz digitaler Medien im Mathematikunterricht ziehen lassen.
Anne Rahn, Frederik Dilling
Weitere Informationen

Premium Partner

    Bildnachweise