Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2017

23.06.2017 | RESEARCH PAPER

Matrix-free algorithm for the optimization of multidisciplinary systems

verfasst von: Alp Dener, Jason E. Hicken

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multidisciplinary engineering systems are usually modeled by coupling software components that were developed for each discipline independently. The use of disparate solvers complicates the optimization of multidisciplinary systems and has been a long-standing motivation for optimization architectures that support modularity. The individual discipline feasible (IDF) formulation is particularly attractive in this respect. IDF achieves modularity by introducing optimization variables and constraints that effectively decouple the disciplinary solvers during each optimization iteration. Unfortunately, the number of variables and constraints can be significant, and the IDF constraint Jacobian required by most conventional optimization algorithms is prohibitively expensive to compute. Furthermore, limited-memory quasi-Newton approximations, commonly used for large-scale problems, exhibit linear convergence rates that can struggle with the large number of design variables introduced by the IDF formulation. In this work, we show that these challenges can be overcome using a reduced-space inexact-Newton-Krylov algorithm. The proposed algorithm avoids the need for the explicit constraint Jacobian and Hessian by using a Krylov iterative method to solve the Newton steps. The Krylov method requires matrix-vector products, which can be evaluated in a matrix-free manner using second-order adjoints. The Krylov method also needs to be preconditioned, and a key contribution of this work is a novel and effective preconditioner that is based on approximating a monolithic solution of the (linearized) multidisciplinary system. We demonstrate the efficacy of the algorithm by comparing it with the popular multidisciplinary feasible formulation on two test problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Arreckx S, Lambe AB, Martins JRRA, Orban D (2016) A matrix-free augmented lagrangian algorithm with application to large-scale structural design optimization. Optim Eng 17(2):359–384CrossRefMATHMathSciNet Arreckx S, Lambe AB, Martins JRRA, Orban D (2016) A matrix-free augmented lagrangian algorithm with application to large-scale structural design optimization. Optim Eng 17(2):359–384CrossRefMATHMathSciNet
Zurück zum Zitat Biros G, Ghattas O (2005a) Parallel lagrange–newton–krylov–schur methods for pde-constrained optimization. part i: the krylov–schur solver. SIAM J Sci Comput 27(2):687–713CrossRefMATHMathSciNet Biros G, Ghattas O (2005a) Parallel lagrange–newton–krylov–schur methods for pde-constrained optimization. part i: the krylov–schur solver. SIAM J Sci Comput 27(2):687–713CrossRefMATHMathSciNet
Zurück zum Zitat Biros G, Ghattas O (2005b) Parallel lagrange–newton–krylov–schur methods for pde-constrained optimization. part ii: the lagrange–newton solver and its application to optimal control of steady viscous flows. SIAM J Sci Comput 27(2):714–739CrossRefMATHMathSciNet Biros G, Ghattas O (2005b) Parallel lagrange–newton–krylov–schur methods for pde-constrained optimization. part ii: the lagrange–newton solver and its application to optimal control of steady viscous flows. SIAM J Sci Comput 27(2):714–739CrossRefMATHMathSciNet
Zurück zum Zitat Bloebaum C (1995) Coupling strength-based system reduction for complex engineering design. Struct Optim 10(2):113–121CrossRef Bloebaum C (1995) Coupling strength-based system reduction for complex engineering design. Struct Optim 10(2):113–121CrossRef
Zurück zum Zitat Byrd RH, Curtis FE, Nocedal J (2008) An inexact sqp method for equality constrained optimization. SIAM J Optim 19(1):351– 369CrossRefMATHMathSciNet Byrd RH, Curtis FE, Nocedal J (2008) An inexact sqp method for equality constrained optimization. SIAM J Optim 19(1):351– 369CrossRefMATHMathSciNet
Zurück zum Zitat Byrd RH, Curtis FE, Nocedal J (2010) An inexact newton method for nonconvex equality constrained optimization. Math Program 122(2):273–299CrossRefMATHMathSciNet Byrd RH, Curtis FE, Nocedal J (2010) An inexact newton method for nonconvex equality constrained optimization. Math Program 122(2):273–299CrossRefMATHMathSciNet
Zurück zum Zitat Conn AR, Gould NI, Toint PL (2000) Trust region methods. SIAM Conn AR, Gould NI, Toint PL (2000) Trust region methods. SIAM
Zurück zum Zitat Cramer EJ, Dennis JE Jr, Frank PD, Lewis RM, Shubin GR (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4(4):754–776CrossRefMATHMathSciNet Cramer EJ, Dennis JE Jr, Frank PD, Lewis RM, Shubin GR (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4(4):754–776CrossRefMATHMathSciNet
Zurück zum Zitat Felippa CA (2001) A historical outline of matrix structural analysis: a play in three acts. Comput Struct 79 (14):1313–1324CrossRef Felippa CA (2001) A historical outline of matrix structural analysis: a play in three acts. Comput Struct 79 (14):1313–1324CrossRef
Zurück zum Zitat Funaro D, Gottlieb D (1988) A new method of imposing boundary conditions in pseudospectral approximations of bolic equations. Math Comput 51(184):599–613CrossRefMATH Funaro D, Gottlieb D (1988) A new method of imposing boundary conditions in pseudospectral approximations of bolic equations. Math Comput 51(184):599–613CrossRefMATH
Zurück zum Zitat Gill PE, Murray W, Saunders MA (2005) Snopt: an sqp algorithm for large-scale constrained optimization. SIAM Rev 47(1):99– 131CrossRefMATHMathSciNet Gill PE, Murray W, Saunders MA (2005) Snopt: an sqp algorithm for large-scale constrained optimization. SIAM Rev 47(1):99– 131CrossRefMATHMathSciNet
Zurück zum Zitat Haftka RT, Sobieszczanski-Sobieski J, Padula SL (1992) On options for interdisciplinary analysis and design optimization. Struct Optim 4(2):65–74CrossRef Haftka RT, Sobieszczanski-Sobieski J, Padula SL (1992) On options for interdisciplinary analysis and design optimization. Struct Optim 4(2):65–74CrossRef
Zurück zum Zitat Heinkenschloss M, Ridzal D (2008) An inexact trust-region sqp method with applications to pde-constrained optimization. In: Numerical mathematics and advanced applications. Springer, pp 613–620 Heinkenschloss M, Ridzal D (2008) An inexact trust-region sqp method with applications to pde-constrained optimization. In: Numerical mathematics and advanced applications. Springer, pp 613–620
Zurück zum Zitat Heinkenschloss M, Ridzal D (2014) A matrix-free trust-region sqp method for equality constrained optimization. SIAM J Optim 24(3):1507–1541CrossRefMATHMathSciNet Heinkenschloss M, Ridzal D (2014) A matrix-free trust-region sqp method for equality constrained optimization. SIAM J Optim 24(3):1507–1541CrossRefMATHMathSciNet
Zurück zum Zitat Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the trilinos project. ACM Trans Math Softw 31(3):397–423. doi:10.1145/1089014.1089021 CrossRefMATHMathSciNet Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the trilinos project. ACM Trans Math Softw 31(3):397–423. doi:10.​1145/​1089014.​1089021 CrossRefMATHMathSciNet
Zurück zum Zitat Herskovits J, Mappa P, Goulart E, Soares CM (2005) Mathematical programming models and algorithms for engineering design optimization. Comput Methods Appl Mech Eng 194(30):3244–3268CrossRefMATHMathSciNet Herskovits J, Mappa P, Goulart E, Soares CM (2005) Mathematical programming models and algorithms for engineering design optimization. Comput Methods Appl Mech Eng 194(30):3244–3268CrossRefMATHMathSciNet
Zurück zum Zitat Hicken JE, Dener A (2015) A flexible iterative solver for nonconvex, equality-constrained quadratic subproblems. SIAM J Sci Comput 37(4):A1801–A1824CrossRefMATHMathSciNet Hicken JE, Dener A (2015) A flexible iterative solver for nonconvex, equality-constrained quadratic subproblems. SIAM J Sci Comput 37(4):A1801–A1824CrossRefMATHMathSciNet
Zurück zum Zitat Jameson A (1989) Aerodynamic design via control theory. In: Recent advances in computational fluid dynamics. Springer, pp 377– 401 Jameson A (1989) Aerodynamic design via control theory. In: Recent advances in computational fluid dynamics. Springer, pp 377– 401
Zurück zum Zitat Kennedy GJ, Martins JRRA (2010) Parallel solution methods for aerostructural analysis and design optimization. In: 13th AIAA/ISSMO multidisciplinary analysis optimization conference, p 9308 Kennedy GJ, Martins JRRA (2010) Parallel solution methods for aerostructural analysis and design optimization. In: 13th AIAA/ISSMO multidisciplinary analysis optimization conference, p 9308
Zurück zum Zitat Kenway GKW, Kennedy GJ, Martins JRRA (2014) Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA J 52(5):935–951CrossRef Kenway GKW, Kennedy GJ, Martins JRRA (2014) Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA J 52(5):935–951CrossRef
Zurück zum Zitat Knoll DA, Keyes DE (2004) Jacobian-free newton–krylov methods: a survey of approaches and applications. J Comput Phys 193(2):357–397CrossRefMATHMathSciNet Knoll DA, Keyes DE (2004) Jacobian-free newton–krylov methods: a survey of approaches and applications. J Comput Phys 193(2):357–397CrossRefMATHMathSciNet
Zurück zum Zitat Kodiyalam S, Sobieszczanski-Sobieski J (2001) Multidisciplinary design optimisation-some formal methods, framework requirements, and application to vehicle design. Int J Veh Des 25(1–2):3–22CrossRef Kodiyalam S, Sobieszczanski-Sobieski J (2001) Multidisciplinary design optimisation-some formal methods, framework requirements, and application to vehicle design. Int J Veh Des 25(1–2):3–22CrossRef
Zurück zum Zitat Kreiss HO, Scherer G (1974) Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor C (ed) Mathematical aspects of finite elements in partial differential equations. Mathematics Research Center, the University of Wisconsin. Academic Press, New York Kreiss HO, Scherer G (1974) Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor C (ed) Mathematical aspects of finite elements in partial differential equations. Mathematics Research Center, the University of Wisconsin. Academic Press, New York
Zurück zum Zitat Martins JRRA, Lambe AB (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 51(9):2049–2075 Martins JRRA, Lambe AB (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 51(9):2049–2075
Zurück zum Zitat Martins JRRA, Alonso JJ, Reuther JJ (2004) High-fidelity aerostructural design optimization of a supersonic business jet. J Aircr 41(3):523–530CrossRef Martins JRRA, Alonso JJ, Reuther JJ (2004) High-fidelity aerostructural design optimization of a supersonic business jet. J Aircr 41(3):523–530CrossRef
Zurück zum Zitat Maute K, Nikbay M, Farhat C (2001) Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems. AIAA J 39(11):2051–2061CrossRefMATH Maute K, Nikbay M, Farhat C (2001) Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems. AIAA J 39(11):2051–2061CrossRefMATH
Zurück zum Zitat Maute K, Nikbay M, Farhat C (2003) Sensitivity analysis and design optimization of three-dimensional non-linear aeroelastic systems by the adjoint method. Int J Numer Methods Eng 56(6):911–933CrossRefMATH Maute K, Nikbay M, Farhat C (2003) Sensitivity analysis and design optimization of three-dimensional non-linear aeroelastic systems by the adjoint method. Int J Numer Methods Eng 56(6):911–933CrossRefMATH
Zurück zum Zitat Nash SG, Nocedal J (1991) A numerical study of the limited memory bfgs method and the truncated-newton method for large scale optimization. SIAM J Optim 1(3):358–372CrossRefMATHMathSciNet Nash SG, Nocedal J (1991) A numerical study of the limited memory bfgs method and the truncated-newton method for large scale optimization. SIAM J Optim 1(3):358–372CrossRefMATHMathSciNet
Zurück zum Zitat Özkaya E, Gauger NR (2009) Single-step one-shot aerodynamic shape optimization. In: Optimal control of coupled systems of partial differential equations. Springer, pp 191–204 Özkaya E, Gauger NR (2009) Single-step one-shot aerodynamic shape optimization. In: Optimal control of coupled systems of partial differential equations. Springer, pp 191–204
Zurück zum Zitat Schittkowski K (1986) Nlpql: a fortran subroutine solving constrained nonlinear programming problems. Ann Oper Res 5(2):485–500CrossRefMathSciNet Schittkowski K (1986) Nlpql: a fortran subroutine solving constrained nonlinear programming problems. Ann Oper Res 5(2):485–500CrossRefMathSciNet
Zurück zum Zitat Steihaug T (1983) The conjugate gradient method and trust regions in large scale optimization. SIAM J Numer Anal 20(3):626–637CrossRefMATHMathSciNet Steihaug T (1983) The conjugate gradient method and trust regions in large scale optimization. SIAM J Numer Anal 20(3):626–637CrossRefMATHMathSciNet
Zurück zum Zitat Ta’asan S, Kuruvila G, Salas M (1992) Aerodynamic design and optimization in one shot. In: 30th aerospace sciences meeting and exhibit, p 25 Ta’asan S, Kuruvila G, Salas M (1992) Aerodynamic design and optimization in one shot. In: 30th aerospace sciences meeting and exhibit, p 25
Zurück zum Zitat Turner M (1959) The direct stiffness method of structural analysis. Boeing Airplane Company Turner M (1959) The direct stiffness method of structural analysis. Boeing Airplane Company
Zurück zum Zitat Wang Z, Navon IM, Le Dimet F, Zou X (1992) The second order adjoint analysis: theory and applications. Meteorog Atmos Phys 50(1–3):3–20CrossRef Wang Z, Navon IM, Le Dimet F, Zou X (1992) The second order adjoint analysis: theory and applications. Meteorog Atmos Phys 50(1–3):3–20CrossRef
Zurück zum Zitat Wright S, Nocedal J (2006) Numerical optimization, 2nd edn. Springer Science Wright S, Nocedal J (2006) Numerical optimization, 2nd edn. Springer Science
Metadaten
Titel
Matrix-free algorithm for the optimization of multidisciplinary systems
verfasst von
Alp Dener
Jason E. Hicken
Publikationsdatum
23.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2017
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1734-0

Weitere Artikel der Ausgabe 6/2017

Structural and Multidisciplinary Optimization 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.