Skip to main content
Erschienen in: Wireless Personal Communications 2/2017

25.05.2017

Maximum Transmission Capacity in Cognitive Radio Networks

verfasst von: Shujing Xie, Lianfeng Shen

Erschienen in: Wireless Personal Communications | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The transmission capacities (TC) is defined as the sum of successful transmissions per unit area in the secondary and the primary systems while meeting the target outage probabilities of both. We obtain the TC of different spectrum sharing modes in cognitive radio networks over fading channels by stochastic geometry. The ratios of transmission power and user density between two systems are derived. The constraint is found to make the TC of spectrum sharing mode exceed that of single system mode. The upper bound of TC is derived and an accessing strategy to reach the maximum value is proposed, under which the TC of secondary user will be maximized when that of primary user is fixed. Numerical results confirm the analytical derivations and show that the TC with our accessing strategy will be larger than that of single primary system mode or fixed spectrum sharing mode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Federal Communications Commission. (2002). Spectrum Policy Task Force, Rep. ET 2002, Docket no. 02-135. Federal Communications Commission. (2002). Spectrum Policy Task Force, Rep. ET 2002, Docket no. 02-135.
2.
Zurück zum Zitat Xie, S., Liu, Y., Zhang, Y., & Yu, R. (2010). A parallel cooperative spectrum sensing in cognitive radio networks. IEEE Transaction on Vehicular Technology, 55(8), 4079–4092.CrossRef Xie, S., Liu, Y., Zhang, Y., & Yu, R. (2010). A parallel cooperative spectrum sensing in cognitive radio networks. IEEE Transaction on Vehicular Technology, 55(8), 4079–4092.CrossRef
3.
Zurück zum Zitat Bastami, Babak Abbasi, & Saberinia, Ebrahim. (2013). A practical multibit data combining strategy for cooperative spectrum sensing. IEEE Transaction on Vehicular Technology, 62(1), 384–389.CrossRef Bastami, Babak Abbasi, & Saberinia, Ebrahim. (2013). A practical multibit data combining strategy for cooperative spectrum sensing. IEEE Transaction on Vehicular Technology, 62(1), 384–389.CrossRef
4.
Zurück zum Zitat Zhi, Q., Shuguang, C., & Ali, H. S. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef Zhi, Q., Shuguang, C., & Ali, H. S. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef
5.
Zurück zum Zitat Zhang, Z., Han, Z., Li, H., Yang, D., & Pei, C. (2011). Belief propagation based cooperative compressed spectrum sensing in wideband cognitive radio networks. IEEE Transaction on Wireless Communications, 10(9), 3020–3031.CrossRef Zhang, Z., Han, Z., Li, H., Yang, D., & Pei, C. (2011). Belief propagation based cooperative compressed spectrum sensing in wideband cognitive radio networks. IEEE Transaction on Wireless Communications, 10(9), 3020–3031.CrossRef
6.
Zurück zum Zitat Zhang, Y. L., Zhang, Q. Y., & Melodia, T. (2010). A frequency-domain entropy-based detector for robust spectrum sensing in cognitive radio networks. IEEE Communications Letters, 14(6), 533–535.CrossRef Zhang, Y. L., Zhang, Q. Y., & Melodia, T. (2010). A frequency-domain entropy-based detector for robust spectrum sensing in cognitive radio networks. IEEE Communications Letters, 14(6), 533–535.CrossRef
7.
Zurück zum Zitat Zhang, S., & Bao, Z. (2011). An adaptive spectrum sensing algorithm under noise uncertainty. In Proceedings of IEEE international conference on communications (ICC), Kyoto, Japan (pp. 1–5). Zhang, S., & Bao, Z. (2011). An adaptive spectrum sensing algorithm under noise uncertainty. In Proceedings of IEEE international conference on communications (ICC), Kyoto, Japan (pp. 1–5).
8.
Zurück zum Zitat Shen, L., Wang, H., Zhang, W., & Zhao, Z. (2011). Blind spectrum sensing for cognitive radio channels with noise uncertainty. IEEE Transactions on Wireless Communications, 10(6), 1721–1724.CrossRef Shen, L., Wang, H., Zhang, W., & Zhao, Z. (2011). Blind spectrum sensing for cognitive radio channels with noise uncertainty. IEEE Transactions on Wireless Communications, 10(6), 1721–1724.CrossRef
9.
Zurück zum Zitat Shen, J., Jiang, T., Liu, S., & Zhang, Z. (2009). Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(10), 5166–5175.CrossRef Shen, J., Jiang, T., Liu, S., & Zhang, Z. (2009). Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(10), 5166–5175.CrossRef
10.
Zurück zum Zitat Stergios, S., & Arumugam, N. (2012). On the throughput and spectrum sensing enhancement of opportunistic spectrum access cognitive radio networks. IEEE Transactions on Wireless Communications, 11(1), 97–107.CrossRef Stergios, S., & Arumugam, N. (2012). On the throughput and spectrum sensing enhancement of opportunistic spectrum access cognitive radio networks. IEEE Transactions on Wireless Communications, 11(1), 97–107.CrossRef
11.
Zurück zum Zitat Yin, W., Ren, P., Du, Q., & Wang, Y. (2012). Delay and throughput oriented continuous spectrum sensing schemes in cognitive radio networks. IEEE Transactions on Wireless Communications, 11(6), 2148–2159.CrossRef Yin, W., Ren, P., Du, Q., & Wang, Y. (2012). Delay and throughput oriented continuous spectrum sensing schemes in cognitive radio networks. IEEE Transactions on Wireless Communications, 11(6), 2148–2159.CrossRef
12.
Zurück zum Zitat Vartiainen, J., Hoyhtya, M., Lehtomaki, J., & Braysy, T. (2010). Priority channel selection based on detection history database. In Proceedings of the 5th CrownCom (pp. 1–5). Vartiainen, J., Hoyhtya, M., Lehtomaki, J., & Braysy, T. (2010). Priority channel selection based on detection history database. In Proceedings of the 5th CrownCom (pp. 1–5).
13.
Zurück zum Zitat Do, T., & Mark, B. L. (2010). Joint user–temporal spectrum sensing for cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(7), 3480–3490.CrossRef Do, T., & Mark, B. L. (2010). Joint user–temporal spectrum sensing for cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(7), 3480–3490.CrossRef
14.
Zurück zum Zitat Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks’. IEEE Transactions on Information Theory, 46(2), 388–404.MathSciNetCrossRefMATH Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks’. IEEE Transactions on Information Theory, 46(2), 388–404.MathSciNetCrossRefMATH
15.
Zurück zum Zitat Jemin, L., Sungmook, L., Jeffrey, G. A., & Daesik H. (2010) Achievable transmission capacity of secondary system in cognitive radio networks. In Proceedings of IEEE International Conference on Communications (ICC), Capetown, South Africa (pp. 1–5). Jemin, L., Sungmook, L., Jeffrey, G. A., & Daesik H. (2010) Achievable transmission capacity of secondary system in cognitive radio networks. In Proceedings of IEEE International Conference on Communications (ICC), Capetown, South Africa (pp. 1–5).
16.
Zurück zum Zitat Mohammad, G. K., Keivan, N., & Halim, Y. (2010) Impact of the secondary network on the outage performance of the primary service in spectrum sharing. In Proceedings of IEEE International Conference on Communications (ICC), Capetown, South Africa (pp. 1–5). Mohammad, G. K., Keivan, N., & Halim, Y. (2010) Impact of the secondary network on the outage performance of the primary service in spectrum sharing. In Proceedings of IEEE International Conference on Communications (ICC), Capetown, South Africa (pp. 1–5).
17.
Zurück zum Zitat Changchuan, Y., Long, G., Tie, L., & Shuguang, C. (2009). Transmission capacities for overlaid wireless ad hoc networks with outage constraints. In Proceedings of IEEE International Conference on Communications (ICC), Dresden, Germany (pp. 1–5). Changchuan, Y., Long, G., Tie, L., & Shuguang, C. (2009). Transmission capacities for overlaid wireless ad hoc networks with outage constraints. In Proceedings of IEEE International Conference on Communications (ICC), Dresden, Germany (pp. 1–5).
18.
Zurück zum Zitat Lee, J., Andrews, J. G., & Hong, D. (2011). Spectrum-sharing transmission capacity. IEEE Transactions on Wireless Communications, 10(9), 3053–3063.CrossRef Lee, J., Andrews, J. G., & Hong, D. (2011). Spectrum-sharing transmission capacity. IEEE Transactions on Wireless Communications, 10(9), 3053–3063.CrossRef
19.
Zurück zum Zitat Stoyan, D., Kendall, W., & Mecke, J. (1996) Stochastic geometry and its applications (2nd ed.). Ney York: Wiley, 2008. Stoyan, D., Kendall, W., & Mecke, J. (1996) Stochastic geometry and its applications (2nd ed.). Ney York: Wiley, 2008.
20.
Zurück zum Zitat Kingman, J. F. C. (1993). Poisson processes (1st ed.). Oxford: Oxford University Press.MATH Kingman, J. F. C. (1993). Poisson processes (1st ed.). Oxford: Oxford University Press.MATH
Metadaten
Titel
Maximum Transmission Capacity in Cognitive Radio Networks
verfasst von
Shujing Xie
Lianfeng Shen
Publikationsdatum
25.05.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4348-3

Weitere Artikel der Ausgabe 2/2017

Wireless Personal Communications 2/2017 Zur Ausgabe

Neuer Inhalt