Skip to main content
Erschienen in:

20.11.2023

MC-GAT: Multi-Channel Graph Attention Networks for Capturing Diverse Information in Complex Graphs

verfasst von: Zhiyao La, Yurong Qian, Hongyong Leng, Tianyu Gu, Weijun Gong, Jiaying Chen

Erschienen in: Cognitive Computation | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph attention networks (GAT), which have strong performance in tackling various analytical tasks on network data, have attracted wide attention. However, complex real-world networks have both edge topology and node features. GAT only relies on the topology of edges to extract network information, and the association between node features is underutilized, which may seriously hinder GAT’s expressive ability on some tasks. In addition, the attention mechanism can automatically assign different weights to different pieces of information, making it easier to express information with multiple aspects. Therefore, we propose semi-supervised multi-channel attention networks (MC-GAT), which simultaneously extract node features, topological structures, and their combination information. The MC-GAT model consists of two specific attention modules, one common attention module, and the attention mechanism. To create node embeddings containing various informational aspects, we use the attention mechanism to assign weights to each. Extensive testing on benchmark datasets has shown us to be at our best. The performance of the proposed model is demonstrated by the fact that MC-GAT achieves relative maximum improvements of 4.22% for accuracy (ACC) on BlogCatalog and 5.23% for macro F1-score (F1) on UAI2010. Experimental results on relevant datasets show that the method has satisfactory performance, and multi-channel graph attention can capture richer structural and feature information within linear time complexity. This work provides a new way of thinking about graph neural networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu Z, Fang Y, Liu C, et al. Relative and absolute location embedding for few-shot node classification on graph. Proceedings of the AAAI conference on artificial intelligence. 2021;35(5):4267–4275. Liu Z, Fang Y, Liu C, et al. Relative and absolute location embedding for few-shot node classification on graph. Proceedings of the AAAI conference on artificial intelligence. 2021;35(5):4267–4275.
2.
Zurück zum Zitat Prakash SKA, Tucker CS. Node classification using kernel propagation in graph neural networks. Expert Syst Appl. 2021;174: 114655.CrossRef Prakash SKA, Tucker CS. Node classification using kernel propagation in graph neural networks. Expert Syst Appl. 2021;174: 114655.CrossRef
3.
Zurück zum Zitat Smirnov V, Warnow T. MAGUS: multiple sequence alignment using graph clustering. Bioinformatics. 2021;37(12):1666–72.CrossRef Smirnov V, Warnow T. MAGUS: multiple sequence alignment using graph clustering. Bioinformatics. 2021;37(12):1666–72.CrossRef
4.
Zurück zum Zitat Patel R, Guo Y, Alhudhaif A, et al. Graph-based link prediction between human phenotypes and genes. Math Probl Eng. 2021;2022. Patel R, Guo Y, Alhudhaif A, et al. Graph-based link prediction between human phenotypes and genes. Math Probl Eng. 2021;2022.
5.
Zurück zum Zitat Fan W, Ma Y, Li Q, et al. Graph neural networks for social recommendation. The world wide web conference. 2019;417–426. Fan W, Ma Y, Li Q, et al. Graph neural networks for social recommendation. The world wide web conference. 2019;417–426.
6.
Zurück zum Zitat Chami I, Ying Z, Ré C, et al. Hyperbolic graph convolutional neural networks. Adv Neural Inf Process Syst. 2019;32. Chami I, Ying Z, Ré C, et al. Hyperbolic graph convolutional neural networks. Adv Neural Inf Process Syst. 2019;32.
7.
Zurück zum Zitat Li Q, Han Z, Wu X M. Deeper insights into graph convolutional networks for semi-supervised learning. Proceedings of the AAAI conference on artificial intelligence. 2018;32(1). Li Q, Han Z, Wu X M. Deeper insights into graph convolutional networks for semi-supervised learning. Proceedings of the AAAI conference on artificial intelligence. 2018;32(1).
8.
Zurück zum Zitat Wu F, Souza A, Zhang T, et al. Simplifying graph convolutional networks. International conference on machine learning. PMLR. 2019;6861–6871. Wu F, Souza A, Zhang T, et al. Simplifying graph convolutional networks. International conference on machine learning. PMLR. 2019;6861–6871.
9.
Zurück zum Zitat Wang X, Zhu M, Bo D, et al. Am-gcn: adaptive multi-channel graph convolutional networks. Proceedings of the 26th ACM SIGKDD International conference on knowledge discovery & data mining. 2020;1243–1253. Wang X, Zhu M, Bo D, et al. Am-gcn: adaptive multi-channel graph convolutional networks. Proceedings of the 26th ACM SIGKDD International conference on knowledge discovery & data mining. 2020;1243–1253.
10.
Zurück zum Zitat Veličković P, Cucurull G, Casanova A, et al. Graph attention networks. arXiv preprint arXiv: 1710.10903. 2017. Veličković P, Cucurull G, Casanova A, et al. Graph attention networks. arXiv preprint arXiv: 1710.10903. 2017.
11.
Zurück zum Zitat Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203. 2013. Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:​1312.​6203. 2013.
12.
Zurück zum Zitat Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. Adv Neural Inf Process Syst. 2016;29. Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. Adv Neural Inf Process Syst. 2016;29.
13.
14.
Zurück zum Zitat Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. Adv Neural Inf Process Syst. 2017;30. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. Adv Neural Inf Process Syst. 2017;30.
15.
Zurück zum Zitat Wu J, He J, Xu J. Net: degree-specific graph neural networks for node and graph classification. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019;406–415. Wu J, He J, Xu J. Net: degree-specific graph neural networks for node and graph classification. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019;406–415.
16.
Zurück zum Zitat Abu-El-Haija S, Perozzi B, Kapoor A, et al. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. International conference on machine learning. PMLR. 2019;21–29. Abu-El-Haija S, Perozzi B, Kapoor A, et al. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. International conference on machine learning. PMLR. 2019;21–29.
17.
Zurück zum Zitat Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014;701–710. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014;701–710.
18.
Zurück zum Zitat Grover A, Leskovec J. node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 2016;855–864. Grover A, Leskovec J. node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 2016;855–864.
19.
Zurück zum Zitat Perozzi B, Kulkarni V, Skiena S. Walklets: Multiscale graph embeddings for interpretable network classification. arXiv preprint arXiv:1605.02115. 2016;043238–23. Perozzi B, Kulkarni V, Skiena S. Walklets: Multiscale graph embeddings for interpretable network classification. arXiv preprint arXiv:​1605.​02115. 2016;043238–23.
20.
Zurück zum Zitat Tang J, Qu M, Wang M, et al. Line: Large-scale information network embedding. Proceedings of the 24th international conference on world wide web. 2015;1067–1077. Tang J, Qu M, Wang M, et al. Line: Large-scale information network embedding. Proceedings of the 24th international conference on world wide web. 2015;1067–1077.
21.
Zurück zum Zitat Song L, Smola A, Gretton A, et al. Supervised feature selection via dependence estimation. Proceedings of the 24th international conference on Machine learning. 2007;823–830. Song L, Smola A, Gretton A, et al. Supervised feature selection via dependence estimation. Proceedings of the 24th international conference on Machine learning. 2007;823–830.
22.
Zurück zum Zitat Wang X, Ji H, Shi C, et al. Heterogeneous graph attention network. The world wide web conference. 2019;2022–2032. Wang X, Ji H, Shi C, et al. Heterogeneous graph attention network. The world wide web conference. 2019;2022–2032.
23.
Zurück zum Zitat Wang W, Liu X, Jiao P, et al. A unified weakly supervised framework for community detection and semantic matching. Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III 22. Springer International Publishing, 2018;218-230. Wang W, Liu X, Jiao P, et al. A unified weakly supervised framework for community detection and semantic matching. Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III 22. Springer International Publishing, 2018;218-230.
24.
Zurück zum Zitat Meng Z, Liang S, Bao H, et al. Co-embedding attributed networks. Proceedings of the twelfth ACM international conference on web search and data mining. 2019;393–401. Meng Z, Liang S, Bao H, et al. Co-embedding attributed networks. Proceedings of the twelfth ACM international conference on web search and data mining. 2019;393–401.
25.
Zurück zum Zitat Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9(11). Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9(11).
Metadaten
Titel
MC-GAT: Multi-Channel Graph Attention Networks for Capturing Diverse Information in Complex Graphs
verfasst von
Zhiyao La
Yurong Qian
Hongyong Leng
Tianyu Gu
Weijun Gong
Jiaying Chen
Publikationsdatum
20.11.2023
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2024
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10222-8

Weitere Artikel der Ausgabe 2/2024

Cognitive Computation 2/2024 Zur Ausgabe