Skip to main content
Erschienen in: Wireless Personal Communications 1/2020

23.08.2019

MCTRP: An Energy Efficient Tree Routing Protocol for Vehicular Ad Hoc Network Using Genetic Whale Optimization Algorithm

verfasst von: Usha Mohanakrishnan, B. Ramakrishnan

Erschienen in: Wireless Personal Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

VANETs are wireless sensor networks that suffer from the drawback of highly mobile nodes. The main objective of any type of network is to achieve efficient transmission goals. The vehicles act as the transmitting nodes. Cognitive radio technology helps in sensing the spectrum in order to ensure the efficient usage of the reserved channels by all the nodes. Our proposed system incorporates a routing protocol with the cognitive radio technology for efficient channel assignment. The routing protocol applies a tree based structure for efficient routing within and between networks. The tree routing protocol is further altered by the inclusion of an efficient optimized scheme. The proposed technique involves a Genetic Whale Optimization Algorithm which helps in choosing a root channel for transmission. When the selected root channel becomes active, the other channels are disabled. The proposed tree routing protocol is called the modified cognitive tree routing protocol (MCTRP).Apart from routing this protocol also caters to the need of effective channel utilization by allocating the spectrum fairly. This scheme results in ranking the channels based on their transmission efficiency and also aims to reduce the inherent delay usually associated with VANETs. The protocol also handles link breakages efficiently. The proposed scenario is simulated in NS2 and is evaluated based on the major network metrics. Our protocol shows a sharp decline in the associated delay and guarantees effective channel utilization. The proposed MCTRP method is effective over other protocols, such as, CTRP and OLSR. The analytical results show that MCTRP promises minimum overheads with effective channel utilization than the existing protocols.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jalil Piran, M., Cho, Y., Yun, J., Ali, A., & Suh, D. Y. (2014). Cognitive radio-based vehicular ad hoc and sensor networks. International Journal of Distributed Sensor Networks,10(8), 1–11.CrossRef Jalil Piran, M., Cho, Y., Yun, J., Ali, A., & Suh, D. Y. (2014). Cognitive radio-based vehicular ad hoc and sensor networks. International Journal of Distributed Sensor Networks,10(8), 1–11.CrossRef
2.
Zurück zum Zitat Nassef, L., & Alhebshi, R. (2016). Secure spectrum sensing in cognitive radio sensor networks: A survey. International Journal of Computational Engineering Research (IJCER),6(3), 1–7. Nassef, L., & Alhebshi, R. (2016). Secure spectrum sensing in cognitive radio sensor networks: A survey. International Journal of Computational Engineering Research (IJCER),6(3), 1–7.
3.
Zurück zum Zitat Patel, J., & Thakkar, M. (2014). A survey on cognitive radio wireless sensor networks. International Journal of Engineering Development and Research, 1(3), 146–148. Patel, J., & Thakkar, M. (2014). A survey on cognitive radio wireless sensor networks. International Journal of Engineering Development and Research, 1(3), 146–148.
4.
Zurück zum Zitat Abolarinwa, J. A., Salawu. N., & Achonu. (2013). Cognitive radio-based wireless sensor networks as next generation sensor network: Concept, problems and prospects. Journal of Emerging Trends in Computing and Information Sciences,4(8), 146–148. Abolarinwa, J. A., Salawu. N., & Achonu. (2013). Cognitive radio-based wireless sensor networks as next generation sensor network: Concept, problems and prospects. Journal of Emerging Trends in Computing and Information Sciences,4(8), 146–148.
5.
Zurück zum Zitat Qu, Y., Dong, C., Tang, S., Chen, C., Dai, H., Wang, H., et al. (2017). Opportunistic network coding for secondary users in cognitive radio networks. Ad Hoc Networks,56, 186–201.CrossRef Qu, Y., Dong, C., Tang, S., Chen, C., Dai, H., Wang, H., et al. (2017). Opportunistic network coding for secondary users in cognitive radio networks. Ad Hoc Networks,56, 186–201.CrossRef
6.
Zurück zum Zitat Rao, K. L., Kalyana Chakravarthy, C., & Chilukuri, S. (2015). Energy efficient routing in cognitive radio networks: Challenges and existing solutions. Journal on Communication Technology: Special Issue,6, 1039–1052. Rao, K. L., Kalyana Chakravarthy, C., & Chilukuri, S. (2015). Energy efficient routing in cognitive radio networks: Challenges and existing solutions. Journal on Communication Technology: Special Issue,6, 1039–1052.
7.
Zurück zum Zitat Mishra, P., & Dewangan, N. (2015). Survey on optimization methods for spectrum sensing in cognitive radio networks. International Journal of New Technology and Research,1(6), 23–28. Mishra, P., & Dewangan, N. (2015). Survey on optimization methods for spectrum sensing in cognitive radio networks. International Journal of New Technology and Research,1(6), 23–28.
8.
Zurück zum Zitat Wang, J., Chen, R., Tsai, J. J. P., & Wang, D.-C. (2018). Trust-based mechanism design for cooperative spectrum sensing in cognitive radio networks. Computer Communications,116, 90–100.CrossRef Wang, J., Chen, R., Tsai, J. J. P., & Wang, D.-C. (2018). Trust-based mechanism design for cooperative spectrum sensing in cognitive radio networks. Computer Communications,116, 90–100.CrossRef
9.
Zurück zum Zitat Singh, J. S. P., & Rai, M. K. (2017). CROP: Cognitive radio routing protocol for link quality channel diverse cognitive networks. Journal of Network and Computer Applications,104, 48–60.CrossRef Singh, J. S. P., & Rai, M. K. (2017). CROP: Cognitive radio routing protocol for link quality channel diverse cognitive networks. Journal of Network and Computer Applications,104, 48–60.CrossRef
10.
Zurück zum Zitat Rathika, P. D., & Sophia, S. (2017). A distributed scheduling approach for QoS improvement in cognitive radio networks. Computers & Electrical Engineering,57, 186–198.CrossRef Rathika, P. D., & Sophia, S. (2017). A distributed scheduling approach for QoS improvement in cognitive radio networks. Computers & Electrical Engineering,57, 186–198.CrossRef
11.
Zurück zum Zitat Ramzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M., & Anpalagan, A. (2017). Multi-objective optimization for spectrum sharing in cognitive radio networks: A review. Pervasive and Mobile Computing,41, 106–131.CrossRef Ramzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M., & Anpalagan, A. (2017). Multi-objective optimization for spectrum sharing in cognitive radio networks: A review. Pervasive and Mobile Computing,41, 106–131.CrossRef
12.
Zurück zum Zitat Bouabdellah, M., Kaabouch, N., El Bouanani, F., & Ben-Azza, H. (2018). Network layer attacks and countermeasures in cognitive radio networks: A survey. Journal of Information Security and Applications,38, 40–49.CrossRef Bouabdellah, M., Kaabouch, N., El Bouanani, F., & Ben-Azza, H. (2018). Network layer attacks and countermeasures in cognitive radio networks: A survey. Journal of Information Security and Applications,38, 40–49.CrossRef
13.
Zurück zum Zitat Ozger, M., & Akan. O.B. (2013). Event-driven spectrum-aware clustering in cognitive radio sensor networks. In Proceedings of INFOCOM (pp. 1483–1491). Ozger, M., & Akan. O.B. (2013). Event-driven spectrum-aware clustering in cognitive radio sensor networks. In Proceedings of INFOCOM (pp. 1483–1491).
14.
Zurück zum Zitat Bicen, A. O., Cagri Gungor, V., & Akan, O. B. (2012). Delay-sensitive and multimedia communication in cognitive radio sensor networks. Ad Hoc Networks,10(5), 816–830.CrossRef Bicen, A. O., Cagri Gungor, V., & Akan, O. B. (2012). Delay-sensitive and multimedia communication in cognitive radio sensor networks. Ad Hoc Networks,10(5), 816–830.CrossRef
15.
Zurück zum Zitat Esmaeelzadeh, V., Hosseini, E. S., Berangi, R., & Akan, O. B. (2016). Modeling of rate-based congestion control schemes in cognitive radio sensor networks. Ad Hoc Networks,36, 177–188.CrossRef Esmaeelzadeh, V., Hosseini, E. S., Berangi, R., & Akan, O. B. (2016). Modeling of rate-based congestion control schemes in cognitive radio sensor networks. Ad Hoc Networks,36, 177–188.CrossRef
16.
Zurück zum Zitat Kumbhar, S. V., & Durafe, A. (2015). Cognitive radio sensor network future of wireless sensor network. International Journal of Advanced Research in Computer and Communication Engineering,4(2), 492–495. Kumbhar, S. V., & Durafe, A. (2015). Cognitive radio sensor network future of wireless sensor network. International Journal of Advanced Research in Computer and Communication Engineering,4(2), 492–495.
17.
Zurück zum Zitat Houaidia, C., Idoudi, H., Van Den Bossche, A., Saidane, L. A., & Val, T. (2017). Inter-flow and intra-flow interference mitigation routing in wireless mesh networks. Computer Networks,120, 141–156.CrossRef Houaidia, C., Idoudi, H., Van Den Bossche, A., Saidane, L. A., & Val, T. (2017). Inter-flow and intra-flow interference mitigation routing in wireless mesh networks. Computer Networks,120, 141–156.CrossRef
18.
Zurück zum Zitat Al-Turjman, F. (2017). Cognitive routing protocol for disaster-inspired internet of things. Future Generation Computer Systems,92, 2–21. Al-Turjman, F. (2017). Cognitive routing protocol for disaster-inspired internet of things. Future Generation Computer Systems,92, 2–21.
19.
Zurück zum Zitat Hashem, M., Barakat, S. I., & AttaAlla, M. A. (2017). Enhanced tree routing protocols for multi-hop and multi-channel cognitive radio network (EMM-TRP). Journal of Network and computer applications,10, 1–19. Hashem, M., Barakat, S. I., & AttaAlla, M. A. (2017). Enhanced tree routing protocols for multi-hop and multi-channel cognitive radio network (EMM-TRP). Journal of Network and computer applications,10, 1–19.
20.
Zurück zum Zitat Walikar, G. A., & Biradar, R. C. (2017). A survey on hybrid routing mechanisms in mobile ad hoc networks. Journal of Network and Computer Applications,77, 48–63.CrossRef Walikar, G. A., & Biradar, R. C. (2017). A survey on hybrid routing mechanisms in mobile ad hoc networks. Journal of Network and Computer Applications,77, 48–63.CrossRef
21.
Zurück zum Zitat Fadel, E., Faheem, M., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. G. A., et al. (2017). Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Computer Communications,101, 106–120.CrossRef Fadel, E., Faheem, M., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. G. A., et al. (2017). Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Computer Communications,101, 106–120.CrossRef
22.
Zurück zum Zitat Sekhar, R., Raja, K., Ravi Chandra, T. S., Pooja, S., & Tapaswi, S. (2016). Light weight security protocol for communications in vehicular networks. Wireless Networks,22(4), 1343–1353.CrossRef Sekhar, R., Raja, K., Ravi Chandra, T. S., Pooja, S., & Tapaswi, S. (2016). Light weight security protocol for communications in vehicular networks. Wireless Networks,22(4), 1343–1353.CrossRef
23.
Zurück zum Zitat Sathiamoorthy, J., & Ramakrishnan, B. (2016). Energy and delay efficient dynamic cluster formation using improved ant colony optimization algorithm in EAACK MANETs. Wireless Personal Communications,95, 1531–1552.CrossRef Sathiamoorthy, J., & Ramakrishnan, B. (2016). Energy and delay efficient dynamic cluster formation using improved ant colony optimization algorithm in EAACK MANETs. Wireless Personal Communications,95, 1531–1552.CrossRef
24.
Zurück zum Zitat Hof, P. R., & Van Der Gucht, E. (2007). Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). The Anatomical Record,290, 1–31.CrossRef Hof, P. R., & Van Der Gucht, E. (2007). Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). The Anatomical Record,290, 1–31.CrossRef
25.
Zurück zum Zitat Watkins, W. A., & Schevill, W. E. (1989). Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaean- gliae, and Balaenoptera physalus. Journal of Mammalogy,60, 155–163.CrossRef Watkins, W. A., & Schevill, W. E. (1989). Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaean- gliae, and Balaenoptera physalus. Journal of Mammalogy,60, 155–163.CrossRef
26.
Zurück zum Zitat Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., Mckenna, M. F., Simon, M., & Nowacek, D. P. (2013). Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. BioScience,63, 90–100.CrossRef Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., Mckenna, M. F., Simon, M., & Nowacek, D. P. (2013). Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. BioScience,63, 90–100.CrossRef
27.
Zurück zum Zitat Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software,95, 51–67.CrossRef Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software,95, 51–67.CrossRef
29.
Zurück zum Zitat Ying, L., Zhou, Y., & Luo, Q. (2017). Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access,5, 6168–6186.CrossRef Ying, L., Zhou, Y., & Luo, Q. (2017). Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access,5, 6168–6186.CrossRef
Metadaten
Titel
MCTRP: An Energy Efficient Tree Routing Protocol for Vehicular Ad Hoc Network Using Genetic Whale Optimization Algorithm
verfasst von
Usha Mohanakrishnan
B. Ramakrishnan
Publikationsdatum
23.08.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06720-4

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe

Neuer Inhalt