2014 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Nonlinear Analysis
This chapter presents facts concerning the theory of well-posed minimization problems. We recall some classical results obtained in the framework of the theory but focus mainly on the detailed presentation of the application of the theory of measures of noncompactness to investigations of the well-posedness of minimization problem.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
2.
Ansari, Q.H. (ed.): Topics in Nonlinear Analysis and Optimization. World Education, Delhi (2012)
3.
Banaś, J.: Measures of noncompactness in the space of continuous tempered functions. Demonstratio Math.
14, 127–133 (1981)
MATHMathSciNet
4.
Banaś, J.: On drop property and nearly uniformly smooth Banach spaces. Nonlinear Anal. Theory Meth. Appl.
14, 927–933 (1990)
5.
Banaś, J.: Compactness conditions in the geometric theory of Banach spaces. Nonlinear Anal. Theory Meth. Appl.
16, 669–682 (1991)
6.
Banaś, J.: Measures of noncompactness in the study of soultions of nonlinear differential and integral equations. Cent. Eur. J. Math.
10, 2003–2011 (2012)
CrossRefMATHMathSciNet
7.
Banaś, J., Fra̧czek, K.: Conditions involving compactness in geometry of Banach spaces. Nonlinear Anal. Theory Meth. Appl.
20, 1217–1230 (1993)
8.
Banaś, J., Fra̧czek, K.: Locally nearly uniformly smooth Banach spaces. Collect. Math.
44, 13–22 (1993)
9.
Banaś, J., Goebel, K.: Measures of Noncompactness in Banach spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60. Marcel Dekker, New York (1980)
10.
Banaś, J., Martinon, A.: Some properties of the Hausdorff distance in metric spaces. Bull. Austral. Math. Soc.
42, 511–516 (1990)
11.
Banaś, J., Martinon, A.: Measures of noncompactness in Banach sequence spaces. Math. Slovaca
42, 497–503 (1992)
12.
Banaś, J., Sadarangani, K.: Compactness conditions in the study of functional, differential and integral equations. Abstr. Appl. Anal.
2013, Article ID 819315 (2013)
13.
Bednarczuk, E., Penot, J.P.: Metrically well-set minimization problems. Appl. Math. Optim.
26, 273–285 (1992)
CrossRefMATHMathSciNet
14.
Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Lecture Notes in Mathematics, vol. 1543. Springer, Berlin (1993)
15.
Dunford, N., Schwartz, J.T.: Linear Operators I. International Publications, Leyden (1963)
16.
17.
Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
18.
Goebel, K., Sȩkowski, T.: The modulus of noncomapct convexity. Ann. Univ. Mariae Curie-Skłodowska Sect. A
38, 41–48 (1984)
19.
Golden
\(\check{\text{ s }}\)tein, L.S., Markus, A.S.: On a measure of noncompactness of bounded sets and linear operators. In: Studies in Algebra and Mathematical Analysis, Kishinev pp. 45–54 (1965)
20.
Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
21.
Hu, R., Fang, Y., Huang, N., Wong, M.: Well-posedness of systems of equilibrium problems. Taiwan. J. Math.
14, 2435–2446 (2010)
MATHMathSciNet
22.
Huff, R.: Banach spaces which are nearly uniformly convex. Rocky Mount. J. Math.
10, 743–749 (1980)
CrossRefMATHMathSciNet
23.
Knap, Z., Banaś, J.: Characterization of the well-posed minimum problem (in Polish). Tow. Nauk. w Rzeszowie Met. Numer.
6, 51–62 (1980)
24.
Kuratowski, K.: Sur les espaces complets. Fund. Math.
15, 301–309 (1930)
MATH
25.
Kuratowski, K.: Topology. Academic Press, New York (1968)
26.
Levitin, E.S., Polyak, B.T.: Convergence of minimizing sequences in conditional extremum problem. Soviet Math. Dokl.
7, 764–767 (1966)
MATH
27.
Long, X.J., Huang, N.J., Teo, K.L.: Levitin-Polyak well-posedness for equilibrium problems with functional constrains. J. Inequal. Appl.
2008, Article ID 657329 (2008)
28.
Montesinos, V.: Drop property equals reflexivity. Studia Math.
87, 93–100 (1987)
MATHMathSciNet
29.
Revalski, J.P.: Hadamard and strong well-posedness for convex programs. SIAM J. Optim.
7, 519–526 (1997)
CrossRefMATHMathSciNet
30.
Rolewicz, S.: On drop property. Studia Math.
85, 27–35 (1987)
MathSciNet
31.
Rolewicz, S.: On
\(\delta \)-uniform convexity and drop property. Studia Math.
87, 181–191 (1987)
MATHMathSciNet
32.
Sȩkowski, T., Stachura, A.: Noncompact smoothness and noncompact convexity. Atti. Sem. Mat. Fis. Univ. Modena
36, 329–338 (1988)
MathSciNet
33.
Tikhonov, A.N.: On the stability of the functional optimization problem. USSR J. Comput. Math. Math. Phys.
6, 631–634 (1966)
34.
Zolezzi, T.: Extended well-posedness of optimization problem. J. Optim. Theory Appl.
91, 257–266 (1996)
CrossRefMATHMathSciNet
- Titel
- Measures of Noncompactness and Well-Posed Minimization Problems
- DOI
- https://doi.org/10.1007/978-81-322-1883-8_4
- Autor:
-
Józef Banaś
- Verlag
- Springer India
- Sequenznummer
- 4