Skip to main content
Erschienen in: Acta Mechanica 7/2020

16.05.2020 | Original Paper

Mechanical explanation for simultaneous formation of different tissues in an organ morphogenesis

verfasst von: Amir Hossein Haji

Erschienen in: Acta Mechanica | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An interesting recent finding is that, in a medium of nearly linear elastic materials, the stem cell differentiation responds to the Young’s modulus of elasticity. It is discussed here that the more general mechanical identifier of differentiation is indeed the stiffness (rather than the Young’s modulus). Specifically, for nonlinear (and thus more realistic/physiologically mimetic) materials the stiffness experienced by the cells is affected by the intracellular distance and hence by the local density of the cells. It is proposed here that the stiffness-directed differentiation is affected not only by the substrate elasticity but also by the cell density and diffusion effects (relocations). Thus, it is suggested that nonlinear effects actually augment fascinating more versatile capabilities to the stiffness-directed differentiation compared to what was supposed by the traditional linear elastic materials. In particular, it is argued how such modified stiffness-directed differentiation criteria can explain simultaneous differentiation paths leading to the formation of an organ. Formation of organs like a limb requires simultaneous formation of different tissues from the hardest (central cartilage and bone) to softest ones (vascular networks of blood vessels and neurons) at correct locations. This means that while the pattern of initial stem cells is changing, they should follow different differentiation paths at the same time on the same substrate (a primary limb cross section, for instance). Here, it is shown that the distribution and relocation of the stem cells affect their sensing of the surrounding mechanics and hence their differentiation. This means various kinds of tissues automatically form, while the stem cells are redistributing and/or relocating.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Eder, D., Aegerter, C., Basler, K.: Forces controlling organ growth and size. Mech. Dev. 144, 53–61 (2017)CrossRef Eder, D., Aegerter, C., Basler, K.: Forces controlling organ growth and size. Mech. Dev. 144, 53–61 (2017)CrossRef
2.
Zurück zum Zitat Ladoux, B., Mege, R.: Mechanobiology of collective cell behaviors. Nat. Rev. Mol. Cell Biol. 18, 743 (2017)CrossRef Ladoux, B., Mege, R.: Mechanobiology of collective cell behaviors. Nat. Rev. Mol. Cell Biol. 18, 743 (2017)CrossRef
3.
Zurück zum Zitat Li, B., Li, F., Puskar, K.M., Wang, J.H.-C.: Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude. J. Biomech. 42, 1622–1627 (2009)CrossRef Li, B., Li, F., Puskar, K.M., Wang, J.H.-C.: Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude. J. Biomech. 42, 1622–1627 (2009)CrossRef
4.
Zurück zum Zitat Nelson, C.M.: Geometric control of tissue morphogenesis. Biochim. Biophys. Acta 1793, 903–910 (2009)CrossRef Nelson, C.M.: Geometric control of tissue morphogenesis. Biochim. Biophys. Acta 1793, 903–910 (2009)CrossRef
5.
Zurück zum Zitat Moore, K.A., Polte, T., Huang, S., Shi, B., Alsberg, E., Sunday, M.E., Ingber, D.E.: Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev. Dyn. 232, 268–281 (2005)CrossRef Moore, K.A., Polte, T., Huang, S., Shi, B., Alsberg, E., Sunday, M.E., Ingber, D.E.: Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev. Dyn. 232, 268–281 (2005)CrossRef
6.
Zurück zum Zitat Huang, S., Ingber, D.E.: The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1, E131–E138 (1999)CrossRef Huang, S., Ingber, D.E.: The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1, E131–E138 (1999)CrossRef
7.
Zurück zum Zitat Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRef Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRef
8.
Zurück zum Zitat Reilly, G.C., Engler, A.J.: Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43, 55–62 (2010)CrossRef Reilly, G.C., Engler, A.J.: Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43, 55–62 (2010)CrossRef
9.
Zurück zum Zitat Lv, H., Wang, H., Zhang, Z., Yang, W., Liu, W., Li, Y., Li, L.: Biomaterial stiffness determine stem cell fate. Life Sci. 178, 42–48 (2017)CrossRef Lv, H., Wang, H., Zhang, Z., Yang, W., Liu, W., Li, Y., Li, L.: Biomaterial stiffness determine stem cell fate. Life Sci. 178, 42–48 (2017)CrossRef
10.
Zurück zum Zitat Jansen, K.A., Bacabac, R.G., Piechocka, I.K., Koendernik, G.H.: Cells actively stiffen fibrin networks by generating contractile stress. Biophys. J. 105, 2240–2251 (2013)CrossRef Jansen, K.A., Bacabac, R.G., Piechocka, I.K., Koendernik, G.H.: Cells actively stiffen fibrin networks by generating contractile stress. Biophys. J. 105, 2240–2251 (2013)CrossRef
11.
Zurück zum Zitat Licup, A.J., Münster, S., Sharma, A., Sheinmana, M., Jawerth, L.M., Fabry, B., Weitz, D.A., MacKintosh, F.C.: Stress controls the mechanics of collagen networks. PNAS 112(31), 9573–9578 (2015)CrossRef Licup, A.J., Münster, S., Sharma, A., Sheinmana, M., Jawerth, L.M., Fabry, B., Weitz, D.A., MacKintosh, F.C.: Stress controls the mechanics of collagen networks. PNAS 112(31), 9573–9578 (2015)CrossRef
12.
Zurück zum Zitat Ronceray, P., Broadersz, C., Lenz, M.: Fiber networks amplify active stress. PNAS 113(11), 2827–2832 (2016)CrossRef Ronceray, P., Broadersz, C., Lenz, M.: Fiber networks amplify active stress. PNAS 113(11), 2827–2832 (2016)CrossRef
13.
Zurück zum Zitat Wang, H., Abhilash, A.S., Chen, C.S., Wells, R.G., Shenoy, V.B.: Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys. J. 107, 2592–2603 (2014)CrossRef Wang, H., Abhilash, A.S., Chen, C.S., Wells, R.G., Shenoy, V.B.: Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys. J. 107, 2592–2603 (2014)CrossRef
14.
Zurück zum Zitat Han, Y.L., Ronceray, P., Guoqiang, X., Malandrino, A., Kamm, R., Lenz, M., Broedersz, C.P., Guo, M.: Cell contraction induces long-ranged stress stiffening in the extracellular matrix. PNAS 115(16), 4075–4080 (2018)CrossRef Han, Y.L., Ronceray, P., Guoqiang, X., Malandrino, A., Kamm, R., Lenz, M., Broedersz, C.P., Guo, M.: Cell contraction induces long-ranged stress stiffening in the extracellular matrix. PNAS 115(16), 4075–4080 (2018)CrossRef
15.
Zurück zum Zitat Shimizu, H., Yokoyama, S., Asahara, H.: Growth and differentiation of the developing limb bud from the perspective of chondrogenesis. J. Dev. Growth Differ. 49(6), 449–454 (2007)CrossRef Shimizu, H., Yokoyama, S., Asahara, H.: Growth and differentiation of the developing limb bud from the perspective of chondrogenesis. J. Dev. Growth Differ. 49(6), 449–454 (2007)CrossRef
16.
Zurück zum Zitat Deshpande, V.S., Mrksich, M., McMeeking, R.M., Evans, A.G.: A bio-mechanical model for coupling cell contractility with focal adhesion formation. J. Mech. Phys. Solids 56, 1484–1510 (2008)CrossRef Deshpande, V.S., Mrksich, M., McMeeking, R.M., Evans, A.G.: A bio-mechanical model for coupling cell contractility with focal adhesion formation. J. Mech. Phys. Solids 56, 1484–1510 (2008)CrossRef
17.
Zurück zum Zitat Friedrich, M.B., Safran, S.: How cells feel their substrate: spontaneous symmetry breaking of active surface stresses. Soft Matter 8, 3223–3230 (2012)CrossRef Friedrich, M.B., Safran, S.: How cells feel their substrate: spontaneous symmetry breaking of active surface stresses. Soft Matter 8, 3223–3230 (2012)CrossRef
18.
Zurück zum Zitat He, S., Su, Y., Ji, B., Gao, H.: Some basic questions on mechanosensing in cell-substrate interaction. J. Mech. Phys. Solids 70, 116–135 (2014)MathSciNetCrossRef He, S., Su, Y., Ji, B., Gao, H.: Some basic questions on mechanosensing in cell-substrate interaction. J. Mech. Phys. Solids 70, 116–135 (2014)MathSciNetCrossRef
19.
Zurück zum Zitat Bischofs, I.B., Safran, S.A., Schwarz, U.S.: Elastic interactions of active cells with soft materials. Phys. Rev. E 69, 021911 (2004)CrossRef Bischofs, I.B., Safran, S.A., Schwarz, U.S.: Elastic interactions of active cells with soft materials. Phys. Rev. E 69, 021911 (2004)CrossRef
20.
Zurück zum Zitat Basu, S., Sutradhar, S., Paul, R.: Substrate stiffness and mechanical stress due to intercellular cooperativity guides tissue structure. J. Theor. Biol. 14, 124–136 (2018)MathSciNetCrossRef Basu, S., Sutradhar, S., Paul, R.: Substrate stiffness and mechanical stress due to intercellular cooperativity guides tissue structure. J. Theor. Biol. 14, 124–136 (2018)MathSciNetCrossRef
21.
Zurück zum Zitat Murray, J.D.: Mathematical Biology, Vol. 2: Spatial Models and Biomedical Applications, 3rd edn. Springer, New York (2003)CrossRef Murray, J.D.: Mathematical Biology, Vol. 2: Spatial Models and Biomedical Applications, 3rd edn. Springer, New York (2003)CrossRef
22.
Zurück zum Zitat Saha, K., Keung, A.J., Irwin, E.F., Li, Y., Little, L., Schaffer, D.V., Healy, K.E.: Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008)CrossRef Saha, K., Keung, A.J., Irwin, E.F., Li, Y., Little, L., Schaffer, D.V., Healy, K.E.: Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008)CrossRef
23.
Zurück zum Zitat Martini, F.H., Timmons, M.J., Tallitsch, R.B.: Human Anatomy, 7th Edition, Chapter 5: The Skeletal System, pp. 122–124. Pearson Education Inc., London (2012) Martini, F.H., Timmons, M.J., Tallitsch, R.B.: Human Anatomy, 7th Edition, Chapter 5: The Skeletal System, pp. 122–124. Pearson Education Inc., London (2012)
24.
Zurück zum Zitat Betts, J.G., Desaix, P., Johnson, E., Korol, O., Kruse, D., Poe, B., Wise, J.A., Womble, M., Young, K.A.: Anatomy and Physiology, Chapter 6: Bone Tissue and the Skeletal System, pp. 231–233. OpenStax, Rice University, New York (2017) Betts, J.G., Desaix, P., Johnson, E., Korol, O., Kruse, D., Poe, B., Wise, J.A., Womble, M., Young, K.A.: Anatomy and Physiology, Chapter 6: Bone Tissue and the Skeletal System, pp. 231–233. OpenStax, Rice University, New York (2017)
Metadaten
Titel
Mechanical explanation for simultaneous formation of different tissues in an organ morphogenesis
verfasst von
Amir Hossein Haji
Publikationsdatum
16.05.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 7/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02693-9

Weitere Artikel der Ausgabe 7/2020

Acta Mechanica 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.