Skip to main content
Erschienen in: Journal of Materials Science 5/2017

01.03.2017 | Original Paper

Mechanical insights into the stability of heterogeneous solid electrolyte interphase on an electrode particle

verfasst von: Yaolong He, Hongjiu Hu, Kefeng Zhang, Shuang Li, Jinhan Chen

Erschienen in: Journal of Materials Science | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid electrolyte interphase (SEI) is known to be heterogeneous which comprises inorganic and organic decomposition products. To assess the effects of heterogeneity on the stability of the SEI, we establish a mathematical model in simulating the stress of heterogeneous SEI. Comparing with the analytical solution of stress in the homogeneous film, the heterogeneity of SEI is identified to be essential in the stress calculation of the inorganic layer, which is proven decisive for the stability of SEI. Further, the peak tensile stress within the inorganic layer is found in the bilayer SEI. It generates at the interface between the active material and the inorganic layer when the battery is fully charged. In addition, the impacts of the interface parameter, modulus, Poisson’s ratio, thickness of SEI and lithiation properties of active material on SEI stress are systematically investigated. Based on the simulation results, this work provides insights into the stress analysis of the heterogeneous SEI, as well as suggestions in pursuing a well-designed SEI, i.e., a functional gradient heterogeneous SEI in which the inner layer close to the active material provides sufficient mechanical performance while the outer layer near the electrolyte performs good chemical and electrochemical behaviors, to enhance the battery performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nie M, Lucht BL (2014) Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. J Electrochem Soc 161:A1001–A1006CrossRef Nie M, Lucht BL (2014) Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. J Electrochem Soc 161:A1001–A1006CrossRef
2.
Zurück zum Zitat Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341CrossRef Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341CrossRef
3.
Zurück zum Zitat Zhang X, Shyy W, Marie Sastry A (2007) Numerical simulation of intercalation-induced stress in Li-Ion battery electrode particles. J Electrochem Soc 154:A910CrossRef Zhang X, Shyy W, Marie Sastry A (2007) Numerical simulation of intercalation-induced stress in Li-Ion battery electrode particles. J Electrochem Soc 154:A910CrossRef
4.
Zurück zum Zitat Bower AF, Guduru PR, Sethuraman VA (2011) A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J Mech Phys Solids 59:804–828CrossRef Bower AF, Guduru PR, Sethuraman VA (2011) A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J Mech Phys Solids 59:804–828CrossRef
5.
Zurück zum Zitat Cheng Y-T, Verbrugge MW (2009) Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources 190:453–460CrossRef Cheng Y-T, Verbrugge MW (2009) Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources 190:453–460CrossRef
6.
Zurück zum Zitat Cui Z, Gao F, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J Mech Phys Solids 60:1280–1295CrossRef Cui Z, Gao F, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J Mech Phys Solids 60:1280–1295CrossRef
7.
Zurück zum Zitat Hao F, Fang D (2013) Reducing diffusion-induced stresses of electrode–collector bilayer in lithium-ion battery by pre-strain. J Power Sources 242:415–420CrossRef Hao F, Fang D (2013) Reducing diffusion-induced stresses of electrode–collector bilayer in lithium-ion battery by pre-strain. J Power Sources 242:415–420CrossRef
8.
Zurück zum Zitat Yong L, Kai Z, Bailin Z, Xiaoqian Z, Qi W (2015) Effects of reversible chemical reaction on Li diffusion and stresses in spherical composition-gradient electrodes. J Appl Phys 117:245103CrossRef Yong L, Kai Z, Bailin Z, Xiaoqian Z, Qi W (2015) Effects of reversible chemical reaction on Li diffusion and stresses in spherical composition-gradient electrodes. J Appl Phys 117:245103CrossRef
9.
Zurück zum Zitat Yang F (2011) Criterion for insertion-induced microcracking and debonding of thin films. J Power Sources 196:465–469CrossRef Yang F (2011) Criterion for insertion-induced microcracking and debonding of thin films. J Power Sources 196:465–469CrossRef
10.
Zurück zum Zitat Ma ZS, Xie ZC, Wang Y et al (2015) Failure modes of hollow core-shell structural active materials during the lithiation-delithiation process. J Power Sources 290:114–122CrossRef Ma ZS, Xie ZC, Wang Y et al (2015) Failure modes of hollow core-shell structural active materials during the lithiation-delithiation process. J Power Sources 290:114–122CrossRef
11.
Zurück zum Zitat He YL, Hu HJ, Song YC, Guo ZS, Liu C, Zhang JQ (2014) Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes. J Power Sources 248:517–523CrossRef He YL, Hu HJ, Song YC, Guo ZS, Liu C, Zhang JQ (2014) Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes. J Power Sources 248:517–523CrossRef
12.
Zurück zum Zitat Gent WE, Li Y, Ahn S et al (2016) Persistent state-of-charge heterogeneity in relaxed, partially charged Li1- x Ni1/3 Co1/3 Mn1/3 O2 secondary particles. Adv Mater 28:6631–6638CrossRef Gent WE, Li Y, Ahn S et al (2016) Persistent state-of-charge heterogeneity in relaxed, partially charged Li1- x Ni1/3 Co1/3 Mn1/3 O2 secondary particles. Adv Mater 28:6631–6638CrossRef
13.
Zurück zum Zitat Song YC, Soh AK, Zhang JQ (2016) On stress-induced voltage hysteresis in lithium ion batteries: impacts of material property, charge rate and particle size. J Mater Sci 51:9902–9911. doi:10.1007/s10853-016-0223-y CrossRef Song YC, Soh AK, Zhang JQ (2016) On stress-induced voltage hysteresis in lithium ion batteries: impacts of material property, charge rate and particle size. J Mater Sci 51:9902–9911. doi:10.​1007/​s10853-016-0223-y CrossRef
14.
Zurück zum Zitat He Y, Hu H, Huang D (2016) Effects of stoichiometric maximum concentration on lithium diffusion and stress within an insertion electrode particle. Mater Design 92:438–444CrossRef He Y, Hu H, Huang D (2016) Effects of stoichiometric maximum concentration on lithium diffusion and stress within an insertion electrode particle. Mater Design 92:438–444CrossRef
15.
Zurück zum Zitat Zhao KJ, Pharr M, Cai SQ, Vlassak JJ, Suo ZG (2011) Large plastic deformation in high-capacity Lithium-Ion batteries caused by charge and discharge. J Am Ceram Soc 94:S226–S235CrossRef Zhao KJ, Pharr M, Cai SQ, Vlassak JJ, Suo ZG (2011) Large plastic deformation in high-capacity Lithium-Ion batteries caused by charge and discharge. J Am Ceram Soc 94:S226–S235CrossRef
16.
Zurück zum Zitat Li Y, Zhang K, Zheng BL (2015) Stress analysis in spherical composition-gradient electrodes of Lithium-Ion battery. J Electrochem Soc 162:A223–A228CrossRef Li Y, Zhang K, Zheng BL (2015) Stress analysis in spherical composition-gradient electrodes of Lithium-Ion battery. J Electrochem Soc 162:A223–A228CrossRef
17.
Zurück zum Zitat Tokranov A, Sheldon BW, Lu P, Xiao X, Mukhopadhyay A (2014) The origin of stress in the solid electrolyte interphase on carbon electrodes for Li Ion batteries. J Electrochem Soc 161:A58–A65CrossRef Tokranov A, Sheldon BW, Lu P, Xiao X, Mukhopadhyay A (2014) The origin of stress in the solid electrolyte interphase on carbon electrodes for Li Ion batteries. J Electrochem Soc 161:A58–A65CrossRef
18.
Zurück zum Zitat Mukhopadhyay A, Tokranov A, Xiao XC, Sheldon BW (2012) Stress development due to surface processes in graphite electrodes for Li-ion batteries: a first report. Electrochim Acta 66:28–37CrossRef Mukhopadhyay A, Tokranov A, Xiao XC, Sheldon BW (2012) Stress development due to surface processes in graphite electrodes for Li-ion batteries: a first report. Electrochim Acta 66:28–37CrossRef
19.
Zurück zum Zitat Laresgoiti I, Kaebitz S, Ecker M, Sauer DU (2015) Modeling mechanical degradation in lithium ion batteries during cycling: solid electrolyte interphase fracture. J Power Sources 300:112–122CrossRef Laresgoiti I, Kaebitz S, Ecker M, Sauer DU (2015) Modeling mechanical degradation in lithium ion batteries during cycling: solid electrolyte interphase fracture. J Power Sources 300:112–122CrossRef
20.
Zurück zum Zitat Zhao KJ, Pharr M, Hartle L, Vlassak JJ, Suo ZG (2012) Fracture and debonding in lithium-ion batteries with electrodes of hollow core-shell nanostructures. J Power Sources 218:6–14CrossRef Zhao KJ, Pharr M, Hartle L, Vlassak JJ, Suo ZG (2012) Fracture and debonding in lithium-ion batteries with electrodes of hollow core-shell nanostructures. J Power Sources 218:6–14CrossRef
21.
Zurück zum Zitat He Y, Hu H (2015) Analysis of lithium ion concentration and stress in the solid electrolyte interphase on the graphite anode. Phys Chem Chem Phys 17:23565–23572CrossRef He Y, Hu H (2015) Analysis of lithium ion concentration and stress in the solid electrolyte interphase on the graphite anode. Phys Chem Chem Phys 17:23565–23572CrossRef
22.
Zurück zum Zitat Hosop S, Jonghyun P, Sangwoo H, Sastry AM, Wei L (2015) Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: experimental and computational studies. J Power Sources 277:169–179CrossRef Hosop S, Jonghyun P, Sangwoo H, Sastry AM, Wei L (2015) Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: experimental and computational studies. J Power Sources 277:169–179CrossRef
23.
Zurück zum Zitat von Cresce A, Russell SM, Baker DR, Gaskell KJ, Xu K (2014) In situ and quantitative characterization of solid electrolyte interphases. Nano Lett 14:1405–1412CrossRef von Cresce A, Russell SM, Baker DR, Gaskell KJ, Xu K (2014) In situ and quantitative characterization of solid electrolyte interphases. Nano Lett 14:1405–1412CrossRef
24.
Zurück zum Zitat Deng X, Liu XR, Yan HJ, Wang D, Wan LJ (2014) Morphology and modulus evolution of graphite anode in lithium ion battery: an in situ AFM investigation. Sci China Chem 57:178–183CrossRef Deng X, Liu XR, Yan HJ, Wang D, Wan LJ (2014) Morphology and modulus evolution of graphite anode in lithium ion battery: an in situ AFM investigation. Sci China Chem 57:178–183CrossRef
25.
Zurück zum Zitat Hwang J, Jang H (2015) Evolution of solid electrolyte interphase during cycling and its effect on electrochemical properties of LiMn2O4. J Electrochem Soc 162:A103–A107CrossRef Hwang J, Jang H (2015) Evolution of solid electrolyte interphase during cycling and its effect on electrochemical properties of LiMn2O4. J Electrochem Soc 162:A103–A107CrossRef
26.
Zurück zum Zitat Zhang J, Wang R, Yang X et al (2012) Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. Nano Lett 12:2153–2157CrossRef Zhang J, Wang R, Yang X et al (2012) Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. Nano Lett 12:2153–2157CrossRef
27.
Zurück zum Zitat Lu P, Harris SJ (2011) Lithium transport within the solid electrolyte interphase. Electrochem Commun 13:1035–1037CrossRef Lu P, Harris SJ (2011) Lithium transport within the solid electrolyte interphase. Electrochem Commun 13:1035–1037CrossRef
28.
Zurück zum Zitat Shen C, Wang SW, Jin Y, Han WQ (2015) In situ AFM imaging of solid electrolyte interfaces on HOPG with ethylene carbonate and fluoroethylene carbonate-based electrolytes. ACS Appl Mat Interfaces 7:25441–25447CrossRef Shen C, Wang SW, Jin Y, Han WQ (2015) In situ AFM imaging of solid electrolyte interfaces on HOPG with ethylene carbonate and fluoroethylene carbonate-based electrolytes. ACS Appl Mat Interfaces 7:25441–25447CrossRef
29.
Zurück zum Zitat Nie MY, Abraham DP, Chen YJ, Bose A, Lucht BL (2013) Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412CrossRef Nie MY, Abraham DP, Chen YJ, Bose A, Lucht BL (2013) Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412CrossRef
30.
Zurück zum Zitat Nie MY, Chalasani D, Abraham DP, Chen YJ, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267CrossRef Nie MY, Chalasani D, Abraham DP, Chen YJ, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267CrossRef
31.
Zurück zum Zitat Huang ZP, Sun L (2007) Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech 190:151–163CrossRef Huang ZP, Sun L (2007) Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech 190:151–163CrossRef
32.
Zurück zum Zitat Cheng YT, Verbrugge MW (2008) The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J Appl Phys 104:083521CrossRef Cheng YT, Verbrugge MW (2008) The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J Appl Phys 104:083521CrossRef
33.
Zurück zum Zitat Song Y, Shao X, Guo Z, Zhang J (2013) Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries. J Phys D Appl Phys 46:105307CrossRef Song Y, Shao X, Guo Z, Zhang J (2013) Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries. J Phys D Appl Phys 46:105307CrossRef
34.
Zurück zum Zitat Damle SS, Pal S, Kumta PN, Maiti S (2016) Effect of silicon configurations on the mechanical integrity of silicon-carbon nanotube heterostructured anode for lithium ion battery: a computational study. J Power Sources 304:373–383CrossRef Damle SS, Pal S, Kumta PN, Maiti S (2016) Effect of silicon configurations on the mechanical integrity of silicon-carbon nanotube heterostructured anode for lithium ion battery: a computational study. J Power Sources 304:373–383CrossRef
35.
Zurück zum Zitat Shi S, Lu P, Liu Z et al (2012) Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc 134:15476–15487CrossRef Shi S, Lu P, Liu Z et al (2012) Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc 134:15476–15487CrossRef
36.
Zurück zum Zitat Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890–1903CrossRef Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890–1903CrossRef
37.
Zurück zum Zitat Takahashi K, Srinivasan V (2015) Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J Electrochem Soc 162:A635–A645CrossRef Takahashi K, Srinivasan V (2015) Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J Electrochem Soc 162:A635–A645CrossRef
38.
Zurück zum Zitat Lee S-H, You H-G, Han K-S, Kim J, Jung I-H, Song J-H (2014) A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode. J Power Sources 247:307–313CrossRef Lee S-H, You H-G, Han K-S, Kim J, Jung I-H, Song J-H (2014) A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode. J Power Sources 247:307–313CrossRef
39.
Zurück zum Zitat Cheng YT, Verbrugge MW (2010) Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J Electrochem Soc 157:A508–A516CrossRef Cheng YT, Verbrugge MW (2010) Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J Electrochem Soc 157:A508–A516CrossRef
40.
Zurück zum Zitat Sethuraman VA, Van Winkle N, Abraham DP, Bower AF, Guduru PR (2012) Real-time stress measurements in lithium-ion battery negative-electrodes. J Power Sources 206:334–342CrossRef Sethuraman VA, Van Winkle N, Abraham DP, Bower AF, Guduru PR (2012) Real-time stress measurements in lithium-ion battery negative-electrodes. J Power Sources 206:334–342CrossRef
41.
Zurück zum Zitat Zhao J, Lu Z, Wang H et al (2015) Artificial solid electrolyte interphase-protected LixSi nanoparticles: an efficient and stable prelithiation reagent for Lithium-Ion batteries. J Am Chem Soc 137:8372–8375CrossRef Zhao J, Lu Z, Wang H et al (2015) Artificial solid electrolyte interphase-protected LixSi nanoparticles: an efficient and stable prelithiation reagent for Lithium-Ion batteries. J Am Chem Soc 137:8372–8375CrossRef
42.
Zurück zum Zitat Verbrugge MW, Qi Y, Baker DR, Cheng Y-T (2015) Diffusion-Induced Stress within Core-Shell Structures and Implications for Robust Electrode Design and Materials Selection, in Advances in Electrochemical Science and Engineering: Electrochemical Engineering Across Scales: from Molecules to Processes. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim Verbrugge MW, Qi Y, Baker DR, Cheng Y-T (2015) Diffusion-Induced Stress within Core-Shell Structures and Implications for Robust Electrode Design and Materials Selection, in Advances in Electrochemical Science and Engineering: Electrochemical Engineering Across Scales: from Molecules to Processes. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim
43.
Zurück zum Zitat Vogler M, Bieberlehutter A, Gauckler LJ, Warnatz J, Bessler WG (2009) Modelling study of surface reactions, diffusion, and spillover at a Ni/YSZ patterned anode. J Electrochem Soc 156:B663–B672CrossRef Vogler M, Bieberlehutter A, Gauckler LJ, Warnatz J, Bessler WG (2009) Modelling study of surface reactions, diffusion, and spillover at a Ni/YSZ patterned anode. J Electrochem Soc 156:B663–B672CrossRef
44.
Zurück zum Zitat Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394CrossRef Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394CrossRef
45.
Zurück zum Zitat Qinglin Z, Xingcheng X, Weidong Z, Yang-Tse C, Verbrugge MW (2015) Toward high cycle efficiency of silicon-based negative electrodes by designing the solid electrolyte interphase. Adv Energy Mater 5:1401398CrossRef Qinglin Z, Xingcheng X, Weidong Z, Yang-Tse C, Verbrugge MW (2015) Toward high cycle efficiency of silicon-based negative electrodes by designing the solid electrolyte interphase. Adv Energy Mater 5:1401398CrossRef
46.
Zurück zum Zitat Zhang J, Yang XC, Wang R et al (2014) Influences of additives on the formation of a solid electrolyte interphase on MnO electrode studied by atomic force microscopy and force spectroscopy. J Phys Chem C 118:20756–20762CrossRef Zhang J, Yang XC, Wang R et al (2014) Influences of additives on the formation of a solid electrolyte interphase on MnO electrode studied by atomic force microscopy and force spectroscopy. J Phys Chem C 118:20756–20762CrossRef
47.
Zurück zum Zitat Tokranov A, Kumar R, Li C, Minne SC, Xiao X, Sheldon BW (2016) Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in Lithium Ion batteries. Adv Energy Mater 6:1502302CrossRef Tokranov A, Kumar R, Li C, Minne SC, Xiao X, Sheldon BW (2016) Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in Lithium Ion batteries. Adv Energy Mater 6:1502302CrossRef
48.
Zurück zum Zitat Agubra VA, Fergus JW, Fu RJ, Choe SY (2014) Analysis of the deposit layer from electrolyte side reaction on the anode of the pouch type Lithium Ion polymer batteries: the effect of state of charge and charge rate. Electrochim Acta 149:1–10CrossRef Agubra VA, Fergus JW, Fu RJ, Choe SY (2014) Analysis of the deposit layer from electrolyte side reaction on the anode of the pouch type Lithium Ion polymer batteries: the effect of state of charge and charge rate. Electrochim Acta 149:1–10CrossRef
49.
Zurück zum Zitat Kumar R, Tokranov A, Sheldon BW et al (2016) In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Lett 1:689–697CrossRef Kumar R, Tokranov A, Sheldon BW et al (2016) In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Lett 1:689–697CrossRef
50.
Zurück zum Zitat Kim SY, Ostadhossein A, van Duin ACT, Xiao XC, Gao HJ, Qi Y (2016) Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation. Phys Chem Chem Phys 18:3706–3715CrossRef Kim SY, Ostadhossein A, van Duin ACT, Xiao XC, Gao HJ, Qi Y (2016) Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation. Phys Chem Chem Phys 18:3706–3715CrossRef
Metadaten
Titel
Mechanical insights into the stability of heterogeneous solid electrolyte interphase on an electrode particle
verfasst von
Yaolong He
Hongjiu Hu
Kefeng Zhang
Shuang Li
Jinhan Chen
Publikationsdatum
01.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0575-3

Weitere Artikel der Ausgabe 5/2017

Journal of Materials Science 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.