Skip to main content
Erschienen in: Journal of Materials Science 23/2017

17.07.2017 | Review

Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs)

verfasst von: Chang-Soo Kim, Kyu Cho, Mohsen H. Manjili, Marjan Nezafati

Erschienen in: Journal of Materials Science | Ausgabe 23/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The metal-matrix composites/nano-composites (MMCs/MMNCs) reinforced with hard ceramic particulates have received a tremendous attention due to their potential improvements in physical and mechanical performances. In the present work, we have comprehensively collected currently available experimental data sets of Al-based MMCs/MMNCs and have carried out thorough analyses to quantitatively address the impacts of the reinforcement volume fractions, reinforcement particle sizes, and metal-matrix grain sizes on their mechanical properties including the yield strength, ultimate strength, and strain to failure of composites. We also performed a quantitative analysis on the strengthening mechanisms of Al MMNCs to reveal that the grain refinement can play a major role in increasing the strength of composites. Al-based MMC or MMNC materials generally exhibited an indirect relationship between the strength increase and strain-to-failure increase. The results include a critical comparison for the mechanical performance of particulate-reinforced composites for both pure and alloyed Al matrices to elucidate the contemporary status of Al MMC and MMNC materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rohatgi PK, Asthana R, Das S (1986) Solidification, structures, and properties of cast metal-ceramic particle composites. Int Metals Rev 31(1):115–139 Rohatgi PK, Asthana R, Das S (1986) Solidification, structures, and properties of cast metal-ceramic particle composites. Int Metals Rev 31(1):115–139
2.
Zurück zum Zitat Stefanescu DM, Dhindaw BK, Kacar SA, Moitra A (1988) Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites. Metall Trans A 19(11):2847–2855CrossRef Stefanescu DM, Dhindaw BK, Kacar SA, Moitra A (1988) Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites. Metall Trans A 19(11):2847–2855CrossRef
3.
Zurück zum Zitat Ferguson JB, Thao X, Rohatgi PK, Cho K, Kim CS (2014) Computational and analytical prediction of the elastic modulus and yield stress in particulate-reinforced metal matrix composites. Scripta Mater 83:45–48CrossRef Ferguson JB, Thao X, Rohatgi PK, Cho K, Kim CS (2014) Computational and analytical prediction of the elastic modulus and yield stress in particulate-reinforced metal matrix composites. Scripta Mater 83:45–48CrossRef
4.
Zurück zum Zitat Srinivasarao B, Suryanarayana C, Oh-Ishi K, Hono K (2009) Microstructure and mechanical properties of Al–Zr nanocomposite materials. Mater Sci Eng A 518(1):100–107CrossRef Srinivasarao B, Suryanarayana C, Oh-Ishi K, Hono K (2009) Microstructure and mechanical properties of Al–Zr nanocomposite materials. Mater Sci Eng A 518(1):100–107CrossRef
5.
Zurück zum Zitat Breslin MC, Ringnalda J, Xu L, Fuller M, Seeger J, Daehn GS, Otani T, Fraser HL (1995) Processing, microstructure, and properties of co-continuous alumina–aluminum composites. Mater Sci Eng A 195:113–119CrossRef Breslin MC, Ringnalda J, Xu L, Fuller M, Seeger J, Daehn GS, Otani T, Fraser HL (1995) Processing, microstructure, and properties of co-continuous alumina–aluminum composites. Mater Sci Eng A 195:113–119CrossRef
6.
Zurück zum Zitat Halverson DC, Pyzik AJ, Aksay IA, Snowden WE (1989) Processing of boron carbide-aluminum composites. J Am Ceram Soc 72(5):775–780CrossRef Halverson DC, Pyzik AJ, Aksay IA, Snowden WE (1989) Processing of boron carbide-aluminum composites. J Am Ceram Soc 72(5):775–780CrossRef
7.
Zurück zum Zitat Nardone VC, Prewo KM (1986) On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Mater 20(1):43–48CrossRef Nardone VC, Prewo KM (1986) On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Mater 20(1):43–48CrossRef
8.
Zurück zum Zitat Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453CrossRef Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453CrossRef
9.
Zurück zum Zitat Rawal SP (2001) Metal-matrix composites for space applications. JOM 53(4):14–17CrossRef Rawal SP (2001) Metal-matrix composites for space applications. JOM 53(4):14–17CrossRef
10.
Zurück zum Zitat Aghajanian MK, Rocazella MA, Burke JT, Keck SD (1991) The fabrication of metal matrix composites by a pressureless infiltration technique. J Mater Sci 26(2):447–454. doi:10.1007/BF00576541 CrossRef Aghajanian MK, Rocazella MA, Burke JT, Keck SD (1991) The fabrication of metal matrix composites by a pressureless infiltration technique. J Mater Sci 26(2):447–454. doi:10.​1007/​BF00576541 CrossRef
11.
Zurück zum Zitat Clyne TW, Mason JF (1987) The squeeze infiltration process for fabrication of metal-matrix composites. Metall Trans A 18(8):1519–1530CrossRef Clyne TW, Mason JF (1987) The squeeze infiltration process for fabrication of metal-matrix composites. Metall Trans A 18(8):1519–1530CrossRef
12.
Zurück zum Zitat Hashim J, Looney L, Hashmi MS (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92:1–7CrossRef Hashim J, Looney L, Hashmi MS (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92:1–7CrossRef
13.
Zurück zum Zitat Kong CY, Soar RC (2005) Fabrication of metal–matrix composites and adaptive composites using ultrasonic consolidation process. Mater Sci Eng A 412(1):12–18CrossRef Kong CY, Soar RC (2005) Fabrication of metal–matrix composites and adaptive composites using ultrasonic consolidation process. Mater Sci Eng A 412(1):12–18CrossRef
14.
Zurück zum Zitat Min SO (2009) Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans Nonferrous Met Soc China 19(6):1400–1404CrossRef Min SO (2009) Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans Nonferrous Met Soc China 19(6):1400–1404CrossRef
15.
Zurück zum Zitat Koli DK, Agnihotri G, Purohit R (2014) A review on properties, behaviour and processing methods for Al-nano Al2O3 composites. Procedia Mater Sci 6:567–589CrossRef Koli DK, Agnihotri G, Purohit R (2014) A review on properties, behaviour and processing methods for Al-nano Al2O3 composites. Procedia Mater Sci 6:567–589CrossRef
16.
Zurück zum Zitat Rahimian M, Parvin N, Ehsani N (2011) The effect of production parameters on microstructure and wear resistance of powder metallurgy Al–Al2O3 composite. Mater Des 32(2):1031–1038CrossRef Rahimian M, Parvin N, Ehsani N (2011) The effect of production parameters on microstructure and wear resistance of powder metallurgy Al–Al2O3 composite. Mater Des 32(2):1031–1038CrossRef
17.
Zurück zum Zitat Su H, Gao W, Feng Z, Lu Z (2012) Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater Des 36:590–596CrossRef Su H, Gao W, Feng Z, Lu Z (2012) Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater Des 36:590–596CrossRef
18.
Zurück zum Zitat Huang X, Kamikawa N, Hansen N (2008) Strengthening mechanisms in nanostructured aluminum. Mater Sci Eng A 483:102–104CrossRef Huang X, Kamikawa N, Hansen N (2008) Strengthening mechanisms in nanostructured aluminum. Mater Sci Eng A 483:102–104CrossRef
19.
Zurück zum Zitat Shanmugasundaram T, Heilmaier M, Murty BS, Sarma VS (2010) On the Hall-Petch relationship in a nanostructured Al–Cu alloy. Mater Sci Eng A 527(29):7821–7825CrossRef Shanmugasundaram T, Heilmaier M, Murty BS, Sarma VS (2010) On the Hall-Petch relationship in a nanostructured Al–Cu alloy. Mater Sci Eng A 527(29):7821–7825CrossRef
20.
Zurück zum Zitat Weertman JR (1993) Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A 166(1–2):161–167CrossRef Weertman JR (1993) Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A 166(1–2):161–167CrossRef
21.
Zurück zum Zitat Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng 483:148–152CrossRef Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng 483:148–152CrossRef
22.
Zurück zum Zitat Yar AA, Montazerian M, Abdizadeh H, Baharvandi HR (2009) Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J Alloys Compd 484(1):400–404CrossRef Yar AA, Montazerian M, Abdizadeh H, Baharvandi HR (2009) Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J Alloys Compd 484(1):400–404CrossRef
23.
Zurück zum Zitat Arsenault RJ (1991) Strengthening mechanisms in particulate MMC: remarks on a paper by Miller and Humphreys. Scripta Mater 25(11):2617–2621CrossRef Arsenault RJ (1991) Strengthening mechanisms in particulate MMC: remarks on a paper by Miller and Humphreys. Scripta Mater 25(11):2617–2621CrossRef
24.
Zurück zum Zitat Miller WS, Humphreys FJ (1991) Strengthening mechanisms in particulate metal matrix composites. Scripta Mater 25(1):33–38CrossRef Miller WS, Humphreys FJ (1991) Strengthening mechanisms in particulate metal matrix composites. Scripta Mater 25(1):33–38CrossRef
25.
Zurück zum Zitat Hemanth J (2009) Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater Sci Eng A 507(1):110–113CrossRef Hemanth J (2009) Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater Sci Eng A 507(1):110–113CrossRef
26.
Zurück zum Zitat Hall JN, Jones JW, Sachdev AK (1994) Particle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 aluminum-SiC p composites. Mater Sci Eng A 183(1):69–80CrossRef Hall JN, Jones JW, Sachdev AK (1994) Particle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 aluminum-SiC p composites. Mater Sci Eng A 183(1):69–80CrossRef
27.
Zurück zum Zitat Mortensen A, Llorca J (2010) Metal matrix composites. Annu Rev Mater Res 40:243–270CrossRef Mortensen A, Llorca J (2010) Metal matrix composites. Annu Rev Mater Res 40:243–270CrossRef
29.
Zurück zum Zitat Kang CG, Lee JH, Youn SW, Oh JK (2005) An estimation of three-dimensional finite element crystal geometry model for the strength prediction of particle-reinforced metal matrix composites. J Mater Process Technol 166(2):173–182CrossRef Kang CG, Lee JH, Youn SW, Oh JK (2005) An estimation of three-dimensional finite element crystal geometry model for the strength prediction of particle-reinforced metal matrix composites. J Mater Process Technol 166(2):173–182CrossRef
30.
Zurück zum Zitat Xu N, Zong BY (2008) Stress in particulate reinforcements and overall stress response on aluminum alloy matrix composites during straining by analytical and numerical modeling. Comput Mater Sci 43(4):1094–1100CrossRef Xu N, Zong BY (2008) Stress in particulate reinforcements and overall stress response on aluminum alloy matrix composites during straining by analytical and numerical modeling. Comput Mater Sci 43(4):1094–1100CrossRef
31.
Zurück zum Zitat Engberg CJ, Zehms EH (1959) Thermal expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000°. C J Am Ceram Soc 42(6):300–305CrossRef Engberg CJ, Zehms EH (1959) Thermal expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000°. C J Am Ceram Soc 42(6):300–305CrossRef
32.
Zurück zum Zitat Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y (1998) High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. J Mater Sci 33(5):1217–1225. doi:10.1023/A:1004377626345 CrossRef Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y (1998) High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. J Mater Sci 33(5):1217–1225. doi:10.​1023/​A:​1004377626345 CrossRef
33.
Zurück zum Zitat Hashim J, Looney L, Hashmi MS (2001) The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol 119(1):324–328CrossRef Hashim J, Looney L, Hashmi MS (2001) The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol 119(1):324–328CrossRef
34.
Zurück zum Zitat Sarina BA, Kai TA, Kvithyld A, Thorvald EN, Tangstad M (2012) Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration. Trans Nonferrous Met Soc China 22(8):1930–1938CrossRef Sarina BA, Kai TA, Kvithyld A, Thorvald EN, Tangstad M (2012) Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration. Trans Nonferrous Met Soc China 22(8):1930–1938CrossRef
36.
Zurück zum Zitat Leon-Patino CA, Drew RA (2005) Role of metal interlayers in the infiltration of metal–ceramic composites. Curr Opin Solid State Mater Sci 9(4):211–218CrossRef Leon-Patino CA, Drew RA (2005) Role of metal interlayers in the infiltration of metal–ceramic composites. Curr Opin Solid State Mater Sci 9(4):211–218CrossRef
37.
Zurück zum Zitat Tan M, Xin Q, Li Z, Zong BY (2001) Influence of SiC and Al2O3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites. J Mater Sci 36(8):2045–2053. doi:10.1023/A:1017591117670 CrossRef Tan M, Xin Q, Li Z, Zong BY (2001) Influence of SiC and Al2O3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites. J Mater Sci 36(8):2045–2053. doi:10.​1023/​A:​1017591117670 CrossRef
38.
Zurück zum Zitat Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39(1):1–23CrossRef Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39(1):1–23CrossRef
39.
Zurück zum Zitat Kang YC, Chan SL (2004) Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys 85(2):438–443CrossRef Kang YC, Chan SL (2004) Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys 85(2):438–443CrossRef
40.
Zurück zum Zitat Sun C, Song M, Wang Z, He Y (2011) Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites. J Mater Eng Perform 20(9):1606–1612CrossRef Sun C, Song M, Wang Z, He Y (2011) Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites. J Mater Eng Perform 20(9):1606–1612CrossRef
41.
Zurück zum Zitat Rahimian M, Ehsani N, Parvin N, reza Baharvandi H (2009) The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J Mater Process Technol 209(14):5387–5393CrossRef Rahimian M, Ehsani N, Parvin N, reza Baharvandi H (2009) The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J Mater Process Technol 209(14):5387–5393CrossRef
42.
Zurück zum Zitat Rahimian M, Parvin N, Ehsani N (2010) Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Mater Sci Eng A 527(4):1031–1038CrossRef Rahimian M, Parvin N, Ehsani N (2010) Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Mater Sci Eng A 527(4):1031–1038CrossRef
43.
Zurück zum Zitat Rezayat M, Akbarzadeh A, Owhadi A (2012) Production of high strength Al– Al2O3 composite by accumulative roll bonding. Compos A 43(2):261–267CrossRef Rezayat M, Akbarzadeh A, Owhadi A (2012) Production of high strength Al– Al2O3 composite by accumulative roll bonding. Compos A 43(2):261–267CrossRef
44.
Zurück zum Zitat Ahmadi A, Toroghinejad MR, Najafizadeh A (2014) Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process. Mater Des 53:13–19CrossRef Ahmadi A, Toroghinejad MR, Najafizadeh A (2014) Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process. Mater Des 53:13–19CrossRef
45.
Zurück zum Zitat Kamrani S, Riedel R, Reihani SS, Kleebe HJ (2009) Effect of reinforcement volume fraction on the mechanical properties of Al-SiC nanocomposites produced by mechanical alloying and consolidation. J Compos Mater Kamrani S, Riedel R, Reihani SS, Kleebe HJ (2009) Effect of reinforcement volume fraction on the mechanical properties of Al-SiC nanocomposites produced by mechanical alloying and consolidation. J Compos Mater
46.
Zurück zum Zitat Kollo L, Bradbury CR, Veinthal R, Jäggi C, Carreno-Morelli E, Leparoux M (2011) Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation. Mater Sci Eng A 528(21):6606–6615CrossRef Kollo L, Bradbury CR, Veinthal R, Jäggi C, Carreno-Morelli E, Leparoux M (2011) Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation. Mater Sci Eng A 528(21):6606–6615CrossRef
47.
Zurück zum Zitat Mula S, Padhi P, Panigrahi SC, Pabi SK, Ghosh S (2009) On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 nanocomposite. Mater Res Bull 44(5):1154–1160CrossRef Mula S, Padhi P, Panigrahi SC, Pabi SK, Ghosh S (2009) On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 nanocomposite. Mater Res Bull 44(5):1154–1160CrossRef
48.
Zurück zum Zitat Khorshid MT, Jahromi SJ, Moshksar MM (2010) Mechanical properties of tri-modal Al matrix composites reinforced by nano-and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion. Mater Des 31(8):3880–3884CrossRef Khorshid MT, Jahromi SJ, Moshksar MM (2010) Mechanical properties of tri-modal Al matrix composites reinforced by nano-and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion. Mater Des 31(8):3880–3884CrossRef
49.
Zurück zum Zitat Sharifi EM, Karimzadeh F, Enayati MH (2011) Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites. Mater Des 32(6):3263–3271CrossRef Sharifi EM, Karimzadeh F, Enayati MH (2011) Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites. Mater Des 32(6):3263–3271CrossRef
50.
Zurück zum Zitat Alizadeh M (2014) Strength prediction of the ARBed Al/Al2O3/B 4 C nano-composites using Orowan model. Mater Res Bull 59:290–294CrossRef Alizadeh M (2014) Strength prediction of the ARBed Al/Al2O3/B 4 C nano-composites using Orowan model. Mater Res Bull 59:290–294CrossRef
51.
Zurück zum Zitat Fathy A, Sadoun A, Abdelhameed M (2014) Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites. Int J Adv Manuf Technol 73(5–8):1049–1056CrossRef Fathy A, Sadoun A, Abdelhameed M (2014) Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites. Int J Adv Manuf Technol 73(5–8):1049–1056CrossRef
52.
Zurück zum Zitat El-Kady O, Fathy A (2014) Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des 54:348–353CrossRef El-Kady O, Fathy A (2014) Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des 54:348–353CrossRef
53.
Zurück zum Zitat Ferguson JB, Lopez HF, Rohatgi PK, Cho K, Kim CS (2014) Impact of volume fraction and size of reinforcement particles on the grain size in metal–matrix micro and nanocomposites. Metall Mater Trans A 45(9):4055–4061CrossRef Ferguson JB, Lopez HF, Rohatgi PK, Cho K, Kim CS (2014) Impact of volume fraction and size of reinforcement particles on the grain size in metal–matrix micro and nanocomposites. Metall Mater Trans A 45(9):4055–4061CrossRef
54.
Zurück zum Zitat Kim CS, Sohn I, Nezafati M, Ferguson JB, Schultz BF, Bajestani-Gohari Z, Rohatgi PK, Cho K (2013) Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J Mater Sci 48(12):4191–4204. doi:10.1007/s10853-013-7232-x CrossRef Kim CS, Sohn I, Nezafati M, Ferguson JB, Schultz BF, Bajestani-Gohari Z, Rohatgi PK, Cho K (2013) Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J Mater Sci 48(12):4191–4204. doi:10.​1007/​s10853-013-7232-x CrossRef
55.
Zurück zum Zitat Ferguson JB, Schultz BF, Venugopalan D, Lopez HF, Rohatgi PK, Cho K, Kim CS (2014) On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: considerations of stress and energy. Met Mater Int 20(2):375CrossRef Ferguson JB, Schultz BF, Venugopalan D, Lopez HF, Rohatgi PK, Cho K, Kim CS (2014) On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: considerations of stress and energy. Met Mater Int 20(2):375CrossRef
56.
Zurück zum Zitat Mondal DP, Das S, Suresh KS, Ramakrishnan N (2007) Compressive deformation behavior of coarse SiC particle reinforced composite: effect of age-hardening and SiC content. Mater Sci Eng A 460:550–560CrossRef Mondal DP, Das S, Suresh KS, Ramakrishnan N (2007) Compressive deformation behavior of coarse SiC particle reinforced composite: effect of age-hardening and SiC content. Mater Sci Eng A 460:550–560CrossRef
57.
Zurück zum Zitat Wang Z, Song M, Sun C, He Y (2011) Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater Sci Eng A 528(3):1131–1137CrossRef Wang Z, Song M, Sun C, He Y (2011) Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater Sci Eng A 528(3):1131–1137CrossRef
58.
Zurück zum Zitat Wang Z, Song M, Sun C, Xiao D, He Y (2010) Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater Sci Eng A 527(24):6537–6542CrossRef Wang Z, Song M, Sun C, Xiao D, He Y (2010) Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater Sci Eng A 527(24):6537–6542CrossRef
59.
Zurück zum Zitat Hua Y, Gu L (2013) Prediction of the thermomechanical behavior of particle-reinforced metal matrix composites. Compos B 45(1):1464–1470CrossRef Hua Y, Gu L (2013) Prediction of the thermomechanical behavior of particle-reinforced metal matrix composites. Compos B 45(1):1464–1470CrossRef
60.
Zurück zum Zitat Amirkhanlou S, Rezaei MR, Niroumand B, Toroghinejad MR (2011) High-strength and highly-uniform composites produced by compocasting and cold rolling processes. Mater Des 32(4):2085–2090CrossRef Amirkhanlou S, Rezaei MR, Niroumand B, Toroghinejad MR (2011) High-strength and highly-uniform composites produced by compocasting and cold rolling processes. Mater Des 32(4):2085–2090CrossRef
61.
Zurück zum Zitat Jamaati R, Amirkhanlou S, Toroghinejad MR, Niroumand B (2011) Effect of particle size on microstructure and mechanical properties of composites produced by ARB process. Mater Sci Eng A 528(4):2143–2148CrossRef Jamaati R, Amirkhanlou S, Toroghinejad MR, Niroumand B (2011) Effect of particle size on microstructure and mechanical properties of composites produced by ARB process. Mater Sci Eng A 528(4):2143–2148CrossRef
62.
Zurück zum Zitat Onat A, Akbulut H, Yilmaz F (2007) Production and characterisation of silicon carbide particulate reinforced aluminium–copper alloy matrix composites by direct squeeze casting method. J Alloys Compd 436(1):375–382CrossRef Onat A, Akbulut H, Yilmaz F (2007) Production and characterisation of silicon carbide particulate reinforced aluminium–copper alloy matrix composites by direct squeeze casting method. J Alloys Compd 436(1):375–382CrossRef
63.
Zurück zum Zitat Slipenyuk A, Kuprin V, Milman Y, Goncharuk V, Eckert J (2006) Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater 54(1):157–166CrossRef Slipenyuk A, Kuprin V, Milman Y, Goncharuk V, Eckert J (2006) Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater 54(1):157–166CrossRef
64.
Zurück zum Zitat Doel TJ, Bowen P (1996) Tensile properties of particulate-reinforced metal matrix composites. Compos A 27(8):655–665CrossRef Doel TJ, Bowen P (1996) Tensile properties of particulate-reinforced metal matrix composites. Compos A 27(8):655–665CrossRef
65.
Zurück zum Zitat Hong SJ, Kim HM, Huh D, Suryanarayana C, Chun BS (2003) Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater Sci Eng A 347(1):198–204CrossRef Hong SJ, Kim HM, Huh D, Suryanarayana C, Chun BS (2003) Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater Sci Eng A 347(1):198–204CrossRef
66.
Zurück zum Zitat Suh YS, Joshi SP, Ramesh KT (2009) An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites. Acta Mater 57(19):5848–5861CrossRef Suh YS, Joshi SP, Ramesh KT (2009) An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites. Acta Mater 57(19):5848–5861CrossRef
67.
Zurück zum Zitat Ogel B, Gurbuz R (2001) Microstructural characterization and tensile properties of hot pressed Al–SiC composites prepared from pure Al and Cu powders. Mater Sci Eng A 301(2):213–220CrossRef Ogel B, Gurbuz R (2001) Microstructural characterization and tensile properties of hot pressed Al–SiC composites prepared from pure Al and Cu powders. Mater Sci Eng A 301(2):213–220CrossRef
68.
Zurück zum Zitat Rajmohan T, Palanikumar K, Ranganathan S (2013) Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans Nonferrous Met Soc China 23(9):2509–2517CrossRef Rajmohan T, Palanikumar K, Ranganathan S (2013) Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans Nonferrous Met Soc China 23(9):2509–2517CrossRef
69.
Zurück zum Zitat Prasad DS, Shoba C, Ramanaiah N (2014) Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol 3(1):79–85CrossRef Prasad DS, Shoba C, Ramanaiah N (2014) Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol 3(1):79–85CrossRef
70.
Zurück zum Zitat Sajjadi SA, Ezatpour H, Beygi H (2011) Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng 528:8765–8771CrossRef Sajjadi SA, Ezatpour H, Beygi H (2011) Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng 528:8765–8771CrossRef
71.
Zurück zum Zitat Hossein-Zadeh M, Mirzaee O, Saidi P (2014) Structural and mechanical characterization of Al-based composite reinforced with heat treated Al2O3 particles. Mater Des 54:245–250CrossRef Hossein-Zadeh M, Mirzaee O, Saidi P (2014) Structural and mechanical characterization of Al-based composite reinforced with heat treated Al2O3 particles. Mater Des 54:245–250CrossRef
72.
Zurück zum Zitat Sajjadi SA, Ezatpour HR, Parizi MT (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Des 34:106–111CrossRef Sajjadi SA, Ezatpour HR, Parizi MT (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Des 34:106–111CrossRef
73.
Zurück zum Zitat Kok M (2005) Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminum alloy composites. J Mater Process Technol 161(3):381–387CrossRef Kok M (2005) Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminum alloy composites. J Mater Process Technol 161(3):381–387CrossRef
74.
Zurück zum Zitat Chou SN, Lu HH, Lii DF, Huang JL (2009) Processing and physical properties of Al2O3/aluminum alloy composites. Ceram Int 35(1):7–12CrossRef Chou SN, Lu HH, Lii DF, Huang JL (2009) Processing and physical properties of Al2O3/aluminum alloy composites. Ceram Int 35(1):7–12CrossRef
75.
Zurück zum Zitat Nagaral M, Bharath V, Auradi V (2013) Effect of Al2O3 particles on mechanical and wear properties of 6061Al alloy metal matrix composites. J Mater Sci Eng 2 Nagaral M, Bharath V, Auradi V (2013) Effect of Al2O3 particles on mechanical and wear properties of 6061Al alloy metal matrix composites. J Mater Sci Eng 2
76.
Zurück zum Zitat Hauert A, Rossoll A, Mortensen A (2010) Fracture of high volume fraction ceramic particle reinforced aluminium under multiaxial stress. Acta Mater 58(11):3895–3907CrossRef Hauert A, Rossoll A, Mortensen A (2010) Fracture of high volume fraction ceramic particle reinforced aluminium under multiaxial stress. Acta Mater 58(11):3895–3907CrossRef
77.
Zurück zum Zitat Al-Dheylan K, Hafeez S (2006) Tensile failure micro mechanisms of 6061 Aluminum reinforced with submicron Al2O3 metal-matrix composites. AJSE Sec B 31(2C):89–98 Al-Dheylan K, Hafeez S (2006) Tensile failure micro mechanisms of 6061 Aluminum reinforced with submicron Al2O3 metal-matrix composites. AJSE Sec B 31(2C):89–98
79.
Zurück zum Zitat Bharath V, Nagaral M, Auradi V, Kori SA (2014) Preparation of 6061Al- Al2O3 MMC’s by stir casting and evaluation of mechanical and wear properties. Procedia Mater Sci 6:1658–1667CrossRef Bharath V, Nagaral M, Auradi V, Kori SA (2014) Preparation of 6061Al- Al2O3 MMC’s by stir casting and evaluation of mechanical and wear properties. Procedia Mater Sci 6:1658–1667CrossRef
80.
Zurück zum Zitat Kim HH, Babu JS, Kang CG (2013) Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements. Mater Sci Eng A 573:92–99CrossRef Kim HH, Babu JS, Kang CG (2013) Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements. Mater Sci Eng A 573:92–99CrossRef
81.
Zurück zum Zitat Ramnath BV, Elanchezhian C, Jaivignesh M, Rajesh S, Parswajinan C, Ghias AS (2014) Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Mater Des 58:332–338CrossRef Ramnath BV, Elanchezhian C, Jaivignesh M, Rajesh S, Parswajinan C, Ghias AS (2014) Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Mater Des 58:332–338CrossRef
82.
Zurück zum Zitat Alizadeh M, Paydar MH, Jazi FS (2013) Structural evaluation and mechanical properties of nanostructured Al/B 4 C composite fabricated by ARB process. Compos B 44(1):339–343CrossRef Alizadeh M, Paydar MH, Jazi FS (2013) Structural evaluation and mechanical properties of nanostructured Al/B 4 C composite fabricated by ARB process. Compos B 44(1):339–343CrossRef
83.
Zurück zum Zitat Baradeswaran A, Perumal AE (2013) Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos B 54:146–152CrossRef Baradeswaran A, Perumal AE (2013) Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos B 54:146–152CrossRef
84.
Zurück zum Zitat Rajan HM, Ramabalan S, Dinaharan I, Vijay SJ (2013) Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater Des 44:438–445CrossRef Rajan HM, Ramabalan S, Dinaharan I, Vijay SJ (2013) Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater Des 44:438–445CrossRef
85.
Zurück zum Zitat Suresh S, Moorthi NS (2013) Process development in stir casting and investigation on microstructures and wear behavior of TiB2 on Al6061 MMC. Procedia Eng. 64:1183–1190CrossRef Suresh S, Moorthi NS (2013) Process development in stir casting and investigation on microstructures and wear behavior of TiB2 on Al6061 MMC. Procedia Eng. 64:1183–1190CrossRef
86.
Zurück zum Zitat Akbari MK, Baharvandi HR, Shirvanimoghaddam K (2015) Tensile and fracture behavior of nano/micro TiB 2 particle reinforced casting A356 aluminum alloy composites. Mater Des 66:150–161CrossRef Akbari MK, Baharvandi HR, Shirvanimoghaddam K (2015) Tensile and fracture behavior of nano/micro TiB 2 particle reinforced casting A356 aluminum alloy composites. Mater Des 66:150–161CrossRef
87.
Zurück zum Zitat Mazahery A, Shabani MO (2012) Characterization of cast A356 alloy reinforced with nano SiC composites. Trans Nonferrous Met Soc China 22(2):275–280CrossRef Mazahery A, Shabani MO (2012) Characterization of cast A356 alloy reinforced with nano SiC composites. Trans Nonferrous Met Soc China 22(2):275–280CrossRef
88.
Zurück zum Zitat Mazahery A, Shabani MO (2012) Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: experimental and novel modeling evaluation. Powder Technol 217:558–565CrossRef Mazahery A, Shabani MO (2012) Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: experimental and novel modeling evaluation. Powder Technol 217:558–565CrossRef
89.
Zurück zum Zitat Knowles AJ, Jiang X, Galano M, Audebert F (2014) Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J Alloys Compd 615:S401–S405CrossRef Knowles AJ, Jiang X, Galano M, Audebert F (2014) Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J Alloys Compd 615:S401–S405CrossRef
90.
Zurück zum Zitat Poovazhagan L, Kalaichelvan K, Rajadurai A, Senthilvelan V (2013) Characterization of hybrid silicon carbide and boron carbide nanoparticles-reinforced aluminum alloy composites. Procedia Eng. 64:681–689CrossRef Poovazhagan L, Kalaichelvan K, Rajadurai A, Senthilvelan V (2013) Characterization of hybrid silicon carbide and boron carbide nanoparticles-reinforced aluminum alloy composites. Procedia Eng. 64:681–689CrossRef
91.
Zurück zum Zitat Akbari MK, Mirzaee O, Baharvandi HR (2013) Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater Des 46:199–205CrossRef Akbari MK, Mirzaee O, Baharvandi HR (2013) Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater Des 46:199–205CrossRef
92.
Zurück zum Zitat Mazahery A, Abdizadeh H, Baharvandi HR (2009) Development of high-performance A356/nano- Al2O3 composites. Mater Sci Eng A 518(1):61–64CrossRef Mazahery A, Abdizadeh H, Baharvandi HR (2009) Development of high-performance A356/nano- Al2O3 composites. Mater Sci Eng A 518(1):61–64CrossRef
93.
Zurück zum Zitat Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y (2014) Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des 55:921–928CrossRef Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y (2014) Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des 55:921–928CrossRef
94.
Zurück zum Zitat Fine ME (1975) Precipitation hardening of aluminum alloys. Metall Trans A 6(4):625CrossRef Fine ME (1975) Precipitation hardening of aluminum alloys. Metall Trans A 6(4):625CrossRef
95.
Zurück zum Zitat Song M, He YH, Wu ZG, Huang BY (2009) Multi-scale model for the ductility of multiple phase materials. Mech Mater 41(5):622–633CrossRef Song M, He YH, Wu ZG, Huang BY (2009) Multi-scale model for the ductility of multiple phase materials. Mech Mater 41(5):622–633CrossRef
96.
Zurück zum Zitat Song M, Huang D (2007) Experimental and modeling of the coupled influences of variously sized particles on the tensile ductility of SiCp/Al metal matrix composites. Metall Mater Trans A 38(9):2127–2137CrossRef Song M, Huang D (2007) Experimental and modeling of the coupled influences of variously sized particles on the tensile ductility of SiCp/Al metal matrix composites. Metall Mater Trans A 38(9):2127–2137CrossRef
97.
Zurück zum Zitat Kallip K, Babu NK, Alogab KA, Kollo L, Maeder X, Arroyo Y, Leparoux M (2017) Microstructure and mechanical properties of near net shaped aluminum/alumina nanocomposites fabricated by powder metallurgy. J Alloys Compd 714:133–143CrossRef Kallip K, Babu NK, Alogab KA, Kollo L, Maeder X, Arroyo Y, Leparoux M (2017) Microstructure and mechanical properties of near net shaped aluminum/alumina nanocomposites fabricated by powder metallurgy. J Alloys Compd 714:133–143CrossRef
98.
Zurück zum Zitat Kumar GSP, Koppad PG, Keshavamurthy R, Alipour M (2017) Microstructure and mechanical behavior of in situ fabricated AA6061-TiC metal matrix composites. Arch Civ Mech Eng 17:535–544CrossRef Kumar GSP, Koppad PG, Keshavamurthy R, Alipour M (2017) Microstructure and mechanical behavior of in situ fabricated AA6061-TiC metal matrix composites. Arch Civ Mech Eng 17:535–544CrossRef
99.
Zurück zum Zitat Li M, Ma K, Jiang L, Yang H, Lavernia EJ, Zhang L, Schoenung JM (2016) Synthesis and mechanical behavior of nanostructured Al 5083/n-TiB2 metal matrix composites. Mater Sci Eng A 656:241–248CrossRef Li M, Ma K, Jiang L, Yang H, Lavernia EJ, Zhang L, Schoenung JM (2016) Synthesis and mechanical behavior of nanostructured Al 5083/n-TiB2 metal matrix composites. Mater Sci Eng A 656:241–248CrossRef
100.
Zurück zum Zitat Jiang L, Yang H, Yee JK, Mo X, Topping T, Lavernia EJ, Schoenung JM (2016) Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles. Act Mater. 103:128–140CrossRef Jiang L, Yang H, Yee JK, Mo X, Topping T, Lavernia EJ, Schoenung JM (2016) Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles. Act Mater. 103:128–140CrossRef
Metadaten
Titel
Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs)
verfasst von
Chang-Soo Kim
Kyu Cho
Mohsen H. Manjili
Marjan Nezafati
Publikationsdatum
17.07.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1378-x

Weitere Artikel der Ausgabe 23/2017

Journal of Materials Science 23/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.