Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Strength of Materials 2/2022

11.06.2022

Mechanical Properties and Microstructure of Thin-Walled Al-Cu Alloy Casting

verfasst von: L. Xiang, J. Q. Tao, Q. Chen, G. Z. Zhao, F. Y. Zhang, S. X. Chai, Z. H. Xing, M. Li, E. C. Yang, F. Li

Erschienen in: Strength of Materials | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This study aimed to investigate the tensile properties and microstructure of Al-Cu alloy casting with a dimension of ∅500 mm × 700 mm and a 5mm-thick wall at room temperature and 200°C. The results indicated that the strength and elongation of Al-Cu alloy casting at room temperature were excellent, exceeding 425 MPa and 8%, respectively. Such a good performance was attributed to the tiny equiaxed grains. However, the occurrence of acicular θ phase distributed around the α-Al matrix grains was disadvantageous to strength and especially to elongation. Moreover, no dynamic recrystallization was observed in the tensile tests at 200°C. Besides, numerous dimples were found in the fracture morphology, which were beneficial to the elongation.
Literatur
1.
Zurück zum Zitat F. G. Li, D. M. Shi, X. Y. Hu, et al., “Effect of concentration-gradient on characteristic parameters of α-Al dendrites in Al-Cu alloy,” J. Alloy. Compd., 889, 161666 (2021). CrossRef F. G. Li, D. M. Shi, X. Y. Hu, et al., “Effect of concentration-gradient on characteristic parameters of α-Al dendrites in Al-Cu alloy,” J. Alloy. Compd., 889, 161666 (2021). CrossRef
2.
Zurück zum Zitat W. Cassada, J. Liu, and J. Staley, “Aluminum alloys for aircraft structures,” Adv. Mater. Process., 160, No. 12, 27–29 (2002). W. Cassada, J. Liu, and J. Staley, “Aluminum alloys for aircraft structures,” Adv. Mater. Process., 160, No. 12, 27–29 (2002).
3.
Zurück zum Zitat A. Heinz, A. Haszler, C. Keidel, et al., “Recent development in aluminium alloys for aerospace applications,” Mater. Sci. Eng. A, 280, No. 1, 102–107 (2000). CrossRef A. Heinz, A. Haszler, C. Keidel, et al., “Recent development in aluminium alloys for aerospace applications,” Mater. Sci. Eng. A, 280, No. 1, 102–107 (2000). CrossRef
4.
Zurück zum Zitat K. S. Derekar, “A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium,” Mater. Sci. Technol., 34, No. 8, 895–916 (2018). CrossRef K. S. Derekar, “A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium,” Mater. Sci. Technol., 34, No. 8, 895–916 (2018). CrossRef
5.
Zurück zum Zitat R. Sun, L. Li, Y. Zhu, et al., “Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening,” J. Alloy. Compd., 747, 255–265 (2018). CrossRef R. Sun, L. Li, Y. Zhu, et al., “Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening,” J. Alloy. Compd., 747, 255–265 (2018). CrossRef
6.
Zurück zum Zitat B. Li, Y. F. Shen, and W.Y. Hu, “Casting defects induced fatigue in aircraft frames of ZL205A aluminum alloy – A failure analysis,” Mater. Design, 32, 2570–2582 (2011). CrossRef B. Li, Y. F. Shen, and W.Y. Hu, “Casting defects induced fatigue in aircraft frames of ZL205A aluminum alloy – A failure analysis,” Mater. Design, 32, 2570–2582 (2011). CrossRef
7.
Zurück zum Zitat M. Zhang, W. W. Zhang, H. D. Zhao, et al., “Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting,” T. Nonferr. Metal. Soc., 17, 496–501 (2007). CrossRef M. Zhang, W. W. Zhang, H. D. Zhao, et al., “Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting,” T. Nonferr. Metal. Soc., 17, 496–501 (2007). CrossRef
8.
Zurück zum Zitat R. J. Wang, S. P. Wu, and W. Chen, “Mechanism of burst feeding in ZL205A casting under mechanical vibration and low pressure,” T. Nonferr. Metal. Soc., 28, 1514–1520 (2018). CrossRef R. J. Wang, S. P. Wu, and W. Chen, “Mechanism of burst feeding in ZL205A casting under mechanical vibration and low pressure,” T. Nonferr. Metal. Soc., 28, 1514–1520 (2018). CrossRef
9.
Zurück zum Zitat M. R. Ghomashchi and A. Vikhrovl, “Squeeze casting: An overview,” J. Mater. Process. Tech., 101, No. 1, 1–9 (2000). CrossRef M. R. Ghomashchi and A. Vikhrovl, “Squeeze casting: An overview,” J. Mater. Process. Tech., 101, No. 1, 1–9 (2000). CrossRef
10.
Zurück zum Zitat P. Vijian and V. P. Arunachalam, “Experimental study of squeeze casting of gunmetal,” J. Mater. Process. Tech., 170, Nos. l–2, 32–36 (2005). P. Vijian and V. P. Arunachalam, “Experimental study of squeeze casting of gunmetal,” J. Mater. Process. Tech., 170, Nos. l–2, 32–36 (2005).
11.
Zurück zum Zitat Z. M. Gao, W. Q. Jie, Y. Q. Liu, et al., “Solidication modelling for coupling predication of porosity and segregation,” Acta Mater., 127, 277–286 (2017). CrossRef Z. M. Gao, W. Q. Jie, Y. Q. Liu, et al., “Solidication modelling for coupling predication of porosity and segregation,” Acta Mater., 127, 277–286 (2017). CrossRef
12.
Zurück zum Zitat H. A. Elhadari, H. A. Patel, D. L. Chen, et al., “Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions,” Mater. Sci. Eng. A, 528, 8128–8138 (2011). CrossRef H. A. Elhadari, H. A. Patel, D. L. Chen, et al., “Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions,” Mater. Sci. Eng. A, 528, 8128–8138 (2011). CrossRef
13.
Zurück zum Zitat J. Delahaye, J. T. Tchuindjang, J. Lecomte-Beckers, et al., “Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting,” Acta Mater., 175, 160–170 (2019). CrossRef J. Delahaye, J. T. Tchuindjang, J. Lecomte-Beckers, et al., “Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting,” Acta Mater., 175, 160–170 (2019). CrossRef
14.
Zurück zum Zitat H. N. Heyme, K. Eckert, and C. Beckermann, “General evolution equation for the specific interface area of dendrites during alloy solidification,” Acta Mater., 140, 87–96 (2017). CrossRef H. N. Heyme, K. Eckert, and C. Beckermann, “General evolution equation for the specific interface area of dendrites during alloy solidification,” Acta Mater., 140, 87–96 (2017). CrossRef
15.
Zurück zum Zitat Z. W. Chen, Y. N. Zhao, and Z. Zhang, “Theoretical and experimental study of precipitation and coarsening kinetics of θ ' phase in Al–Cu alloy,” Vacuum, 189, 110263 (2021). CrossRef Z. W. Chen, Y. N. Zhao, and Z. Zhang, “Theoretical and experimental study of precipitation and coarsening kinetics of θ ' phase in Al–Cu alloy,” Vacuum, 189, 110263 (2021). CrossRef
16.
Zurück zum Zitat W. R. Osorio, J. E. Spinelli, I. L. Ferreira, et al., “The roles of macrosegregation and of dendritic array spacings on the electrochemical behavior of an Al–4.5 wt.% Cu alloy,” Electrochim. Acta, 52, 3265–3273 (2007). CrossRef W. R. Osorio, J. E. Spinelli, I. L. Ferreira, et al., “The roles of macrosegregation and of dendritic array spacings on the electrochemical behavior of an Al–4.5 wt.% Cu alloy,” Electrochim. Acta, 52, 3265–3273 (2007). CrossRef
17.
Zurück zum Zitat Z. N. Wang, X. Lin, L. L Wang, et al., “Microstructure evolution and mechanical properties of the wire + arc additive manufacturing Al-Cu alloy,” Addit. Manuf., 47, 102298 (2021). Z. N. Wang, X. Lin, L. L Wang, et al., “Microstructure evolution and mechanical properties of the wire + arc additive manufacturing Al-Cu alloy,” Addit. Manuf., 47, 102298 (2021).
18.
Zurück zum Zitat X. W. Li, Q. Z. Cai, B. Y. Zhao, et al., “Effect of nano TiN/Ti refiner addition content on the microstructure and properties of as-cast Al-Zn-Mg-Cu alloy,” J. Alloy. Compd., 675, 201–210 (2016). CrossRef X. W. Li, Q. Z. Cai, B. Y. Zhao, et al., “Effect of nano TiN/Ti refiner addition content on the microstructure and properties of as-cast Al-Zn-Mg-Cu alloy,” J. Alloy. Compd., 675, 201–210 (2016). CrossRef
19.
Zurück zum Zitat S. F. Liu, D. X. Zhang, J. R. Xiong, et al., “Microstructure evolution and properties of rapidly solidified Au-20Sn eutectic solder prepared by single-roll technology,” J. Alloy. Compd., 781, 873–882 (2019). CrossRef S. F. Liu, D. X. Zhang, J. R. Xiong, et al., “Microstructure evolution and properties of rapidly solidified Au-20Sn eutectic solder prepared by single-roll technology,” J. Alloy. Compd., 781, 873–882 (2019). CrossRef
20.
Zurück zum Zitat X. Zhang, L. K. Huang, B. Zhang, et al., “Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment,” Mater. Sci Eng. A, 753, 168–178 (2019). CrossRef X. Zhang, L. K. Huang, B. Zhang, et al., “Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment,” Mater. Sci Eng. A, 753, 168–178 (2019). CrossRef
21.
Zurück zum Zitat F. W. Gayle and M. Goodway, “Precipitation hardening in the first aerospace aluminum alloy: the wright flyer crankcase,” Science, 266, No. 5187, 1015–1017 (1994). CrossRef F. W. Gayle and M. Goodway, “Precipitation hardening in the first aerospace aluminum alloy: the wright flyer crankcase,” Science, 266, No. 5187, 1015–1017 (1994). CrossRef
22.
Zurück zum Zitat T. J. Konno, K. Hiraga, and M. Kawasaki, “Guinier-preston (GP) zone revisited: Atomic level observation by HAADF-TEM technique,” Scripta Mater., 44, No. 8, 2303–2307 (2001). CrossRef T. J. Konno, K. Hiraga, and M. Kawasaki, “Guinier-preston (GP) zone revisited: Atomic level observation by HAADF-TEM technique,” Scripta Mater., 44, No. 8, 2303–2307 (2001). CrossRef
23.
Zurück zum Zitat A. M. Hassan, O. M. Bataineh, and K. M. Abed, “The effect of time and temperature on the precipitation behavior and hardness of Al-4wt%Cu alloy using design of experiments,” J. Mater. Process. Tech., 204, Nos. 1–3, 343–349 (2008). CrossRef A. M. Hassan, O. M. Bataineh, and K. M. Abed, “The effect of time and temperature on the precipitation behavior and hardness of Al-4wt%Cu alloy using design of experiments,” J. Mater. Process. Tech., 204, Nos. 1–3, 343–349 (2008). CrossRef
24.
Zurück zum Zitat Z. Zribi, H. H. Ktari, F. Herbst, et al., “EBSD, XRD and SRS characterization of a casting Al-7wt%Si alloy processed by equal channel angular extrusion: Dislocation density evaluation,” Mater. Charact., 153, 190–198 (2019). CrossRef Z. Zribi, H. H. Ktari, F. Herbst, et al., “EBSD, XRD and SRS characterization of a casting Al-7wt%Si alloy processed by equal channel angular extrusion: Dislocation density evaluation,” Mater. Charact., 153, 190–198 (2019). CrossRef
Metadaten
Titel
Mechanical Properties and Microstructure of Thin-Walled Al-Cu Alloy Casting
verfasst von
L. Xiang
J. Q. Tao
Q. Chen
G. Z. Zhao
F. Y. Zhang
S. X. Chai
Z. H. Xing
M. Li
E. C. Yang
F. Li
Publikationsdatum
11.06.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00406-2

Weitere Artikel der Ausgabe 2/2022

Strength of Materials 2/2022 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.