Skip to main content
Erschienen in: Experimental Mechanics 6/2019

06.03.2019

Mechanical Properties of Selective Laser Sintering (SLS) Additive Manufactured Chiral Auxetic Cylindrical Stent

verfasst von: L.C. Geng, X.L. Ruan, W.W. Wu, R. Xia, D.N. Fang

Erschienen in: Experimental Mechanics | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical properties of the stent are of key importance to the mechanical integrity and performance reliability of stent-plaque-artery system, and an ideal stent should have good bending compliance, axial deformation stability, hoop strength and stiffness, larger radial expandable ability, etc. In this paper, innovative chiral stent designs with auxetic properties are proposed, and amplified stent sample is fabricated with SLS additive manufacturing technique. Firstly, through combining micro-CT tomography and image-based finite element analysis, the mechanical properties of as fabricated SLS stent are explored; Secondly, two series of stent samples are fabricated with SLS additive manufacturing techniques, and in-situ compression experiments are performed for studying the deformation mechanisms and auxetic mechanical behaviors of stents. Finally, effects of geometrical parameters on the tensile mechanical performance of these stents are studied with finite element analysis. The proposed chiral stent exhibits auxetic behaviors, and can be tailored through adjusting the unit cell design parameters, such as: struct numbers along circumferential directions, ligament lengths, and node radius.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sanami M, Ravirala N, Alderson K, Alderson A (2014) Auxetic materials for sports applications. Procedia Engineering 72:453–458CrossRef Sanami M, Ravirala N, Alderson K, Alderson A (2014) Auxetic materials for sports applications. Procedia Engineering 72:453–458CrossRef
2.
Zurück zum Zitat Ren X, Das R, Tran P, Ngo TD, Xie YM (2018) Auxetic metamaterials and structures: a review. Smart Mater Struct 27:023001CrossRef Ren X, Das R, Tran P, Ngo TD, Xie YM (2018) Auxetic metamaterials and structures: a review. Smart Mater Struct 27:023001CrossRef
3.
Zurück zum Zitat Rafsanjani A, Pasini D (2016) Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mech. Lett 9:291–296CrossRef Rafsanjani A, Pasini D (2016) Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mech. Lett 9:291–296CrossRef
4.
Zurück zum Zitat Álvarez Elipe JC, Díaz Lantada A (2012) Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater Struct 21:105004CrossRef Álvarez Elipe JC, Díaz Lantada A (2012) Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater Struct 21:105004CrossRef
5.
Zurück zum Zitat Lakes RS (2017) Negative-Poisson's-ratio materials: Auxetic solids. Annu Rev Mater Res 47:63–81CrossRef Lakes RS (2017) Negative-Poisson's-ratio materials: Auxetic solids. Annu Rev Mater Res 47:63–81CrossRef
6.
Zurück zum Zitat Novak N, Vesenjak M, Ren Z (2016) Auxetic cellular materials - a review. Strojniški vestnik – J Mech Eng 62:485–493CrossRef Novak N, Vesenjak M, Ren Z (2016) Auxetic cellular materials - a review. Strojniški vestnik – J Mech Eng 62:485–493CrossRef
7.
Zurück zum Zitat Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a poisson's ratio of −1. Int J Mech Sci 39:305–314CrossRef Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a poisson's ratio of −1. Int J Mech Sci 39:305–314CrossRef
8.
Zurück zum Zitat Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, Miller W, Ravirala N, Smith CW, Zied K (2010) Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Comp Sci Tech 70:1042–1048CrossRef Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, Miller W, Ravirala N, Smith CW, Zied K (2010) Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Comp Sci Tech 70:1042–1048CrossRef
9.
Zurück zum Zitat Wu W, Tao Y, Xia Y, Chen J, Lei H, Sun L, Fang D (2017) Mechanical properties of hierarchical anti-tetrachiral metastructures. Extreme Mech Lett 16:18–32CrossRef Wu W, Tao Y, Xia Y, Chen J, Lei H, Sun L, Fang D (2017) Mechanical properties of hierarchical anti-tetrachiral metastructures. Extreme Mech Lett 16:18–32CrossRef
10.
Zurück zum Zitat Wu W, Song X, Liang J, Xia R, Qian G, Fang D (2018) Mechanical properties of anti-tetrachiral auxetic stents. Comp Struct 185:381–392CrossRef Wu W, Song X, Liang J, Xia R, Qian G, Fang D (2018) Mechanical properties of anti-tetrachiral auxetic stents. Comp Struct 185:381–392CrossRef
11.
Zurück zum Zitat Xia R, Song X, Sun L, Wu W, Li C, Cheng T, Qian G (2018) Mechanical properties of 3D isotropic anti-Tetrachiral Metastructure. Phys Status Solidi B 255:1700343CrossRef Xia R, Song X, Sun L, Wu W, Li C, Cheng T, Qian G (2018) Mechanical properties of 3D isotropic anti-Tetrachiral Metastructure. Phys Status Solidi B 255:1700343CrossRef
12.
Zurück zum Zitat Li H, Ma Y, Wen W, Wu W, Lei H, Fang D (2017) In plane mechanical properties of Tetrachiral and Antitetrachiral hybrid Metastructures. J Appl Mech T-ASME 84:081006–081006–081012 Li H, Ma Y, Wen W, Wu W, Lei H, Fang D (2017) In plane mechanical properties of Tetrachiral and Antitetrachiral hybrid Metastructures. J Appl Mech T-ASME 84:081006–081006–081012
13.
Zurück zum Zitat Wu W, Geng L, Niu Y, Qi D, Cui X, Fang D (2018) Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils. Extreme Mech. Lett 20:104–111CrossRef Wu W, Geng L, Niu Y, Qi D, Cui X, Fang D (2018) Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils. Extreme Mech. Lett 20:104–111CrossRef
14.
Zurück zum Zitat Wu W, Qi D, Liao H, Qian G, Geng L, Niu Y, Liang J (2018) Deformation mechanism of innovative 3D chiral metamaterials. Sci Rep 8:12575CrossRef Wu W, Qi D, Liao H, Qian G, Geng L, Niu Y, Liang J (2018) Deformation mechanism of innovative 3D chiral metamaterials. Sci Rep 8:12575CrossRef
15.
Zurück zum Zitat Liu XN, Huang GL, Hu GK (2012) Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J. Mech. Phys. Solids 60:1907–1921MathSciNetCrossRef Liu XN, Huang GL, Hu GK (2012) Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J. Mech. Phys. Solids 60:1907–1921MathSciNetCrossRef
16.
Zurück zum Zitat Chen Y, Liu XN, Hu GK, Sun QP, Zheng QS (2014) Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proc Math Phys Eng Sci 470:20130734CrossRef Chen Y, Liu XN, Hu GK, Sun QP, Zheng QS (2014) Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proc Math Phys Eng Sci 470:20130734CrossRef
17.
Zurück zum Zitat Spadoni A, Ruzzene M (2012) Elasto-static micropolar behavior of a chiral auxetic lattice. J Mech Phys Solids 60:156–171CrossRef Spadoni A, Ruzzene M (2012) Elasto-static micropolar behavior of a chiral auxetic lattice. J Mech Phys Solids 60:156–171CrossRef
18.
Zurück zum Zitat Wu W, Wang W-Q, Yang D-Z, Qi M (2007) Stent expansion in curved vessel and their interactions: a finite element analysis. J Biomech 40:2580–2585CrossRef Wu W, Wang W-Q, Yang D-Z, Qi M (2007) Stent expansion in curved vessel and their interactions: a finite element analysis. J Biomech 40:2580–2585CrossRef
19.
Zurück zum Zitat García A, Peña E, Martínez MA (2012) Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J Mech Behav Biomed 10:166–175CrossRef García A, Peña E, Martínez MA (2012) Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J Mech Behav Biomed 10:166–175CrossRef
20.
Zurück zum Zitat Tan TW, Douglas GR, Bond T, Phani AS (2011) Compliance and longitudinal strain of cardiovascular stents: influence of cell geometry. Journal of Medical T- ASME 5:041002–041002–041006 Tan TW, Douglas GR, Bond T, Phani AS (2011) Compliance and longitudinal strain of cardiovascular stents: influence of cell geometry. Journal of Medical T- ASME 5:041002–041002–041006
21.
Zurück zum Zitat Migliavacca F, Petrini L Fau - Massarotti P, Massarotti P Fau - Schievano S, Schievano S Fau - Auricchio F, Auricchio F Fau - Dubini G, Dubini G (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomechan Model Mechanobiol 2:205–217 Migliavacca F, Petrini L Fau - Massarotti P, Massarotti P Fau - Schievano S, Schievano S Fau - Auricchio F, Auricchio F Fau - Dubini G, Dubini G (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomechan Model Mechanobiol 2:205–217
22.
Zurück zum Zitat Praveen Kumar G, Jafary-Zadeh M, Cui F (2016) Deployment of a bulk metallic glass-based self-expandable stent in a patient-specific descending aorta. ACS Biomater Sci Eng 2:1951–1958CrossRef Praveen Kumar G, Jafary-Zadeh M, Cui F (2016) Deployment of a bulk metallic glass-based self-expandable stent in a patient-specific descending aorta. ACS Biomater Sci Eng 2:1951–1958CrossRef
23.
Zurück zum Zitat Migliavacca F, Petrini L, Colombo M, Auricchio F, Pietrabissa R (2002) Mechanical behavior of coronary stents investigated through the finite element method. J Biomech 35:803–811CrossRef Migliavacca F, Petrini L, Colombo M, Auricchio F, Pietrabissa R (2002) Mechanical behavior of coronary stents investigated through the finite element method. J Biomech 35:803–811CrossRef
24.
Zurück zum Zitat Bhullar SK, Mawanane HAT, Alderson A, Alderson K, Martin BGJ (2013) Influence of negative Poisson’s ratio on stent applications. Adv Mater 2(3):42–47CrossRef Bhullar SK, Mawanane HAT, Alderson A, Alderson K, Martin BGJ (2013) Influence of negative Poisson’s ratio on stent applications. Adv Mater 2(3):42–47CrossRef
Metadaten
Titel
Mechanical Properties of Selective Laser Sintering (SLS) Additive Manufactured Chiral Auxetic Cylindrical Stent
verfasst von
L.C. Geng
X.L. Ruan
W.W. Wu
R. Xia
D.N. Fang
Publikationsdatum
06.03.2019
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 6/2019
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-019-00489-0

Weitere Artikel der Ausgabe 6/2019

Experimental Mechanics 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.