Skip to main content
Erschienen in: Experimental Mechanics 5/2015

01.06.2015

Mechanical Property Experiments with Ultra-High Strength Micrometer Scale Fibers

verfasst von: K. Şahin, N. A. Fasanella, P. V. Kolluru, I. Chasiotis

Erschienen in: Experimental Mechanics | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent advances in materials synthesis have resulted in the development of continuous carbon fibers with one micron diameter and tensile strengths exceeding 5 GPa. Mechanical experiments on such strong fibers with very small diameters require tensile forces of the order of 5 mN or larger, which presents a major challenge to surface micromachined MEMS–based methods, while making rather impractical the use of existing macroscale methods for fiber testing. The application of large forces results in nonlinear response and out-of-plane deflections of surface micromachined MEMS. Furthermore, existing means for attaching high strength microscale fibers to MEMS can bias the measurement of the mechanical strength or the elastic modulus. This study addresses these issues via the design of microscale mechanical testing devices with a full-range linear response for several microNewtons of applied force, while also employing a new compliant gripping method, which eliminates specimen sliding or failure initiation of high strength fibers at the grips. With this new method, high strength carbon fibers of 1 μm diameter, reinforced with carbon nanotubes, were 100 % successfully tested. Notably, the fiber strength measured with the new compliant gripping method which averted fiber failure at the grips, was 20 % higher than that measured using the prior state-of-the-art approach for fiber gripping via Pt deposition by a focused ion beam.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Naraghi M, Arshad S, Chasiotis I (2011) Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers. Polymer 52:1612–1618CrossRef Naraghi M, Arshad S, Chasiotis I (2011) Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers. Polymer 52:1612–1618CrossRef
2.
Zurück zum Zitat Arshad SN, Naraghi M, Chasiotis I (2011) Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49:1710–1719CrossRef Arshad SN, Naraghi M, Chasiotis I (2011) Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49:1710–1719CrossRef
3.
Zurück zum Zitat Wang M-S, Golberg D, Bando Y (2010) Tensile tests on individual single-walled carbon nanotubes: linking nanotube strength with its defects. Adv Mater 22(36):4071–4075CrossRef Wang M-S, Golberg D, Bando Y (2010) Tensile tests on individual single-walled carbon nanotubes: linking nanotube strength with its defects. Adv Mater 22(36):4071–4075CrossRef
4.
Zurück zum Zitat Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, Espinosa HD (2008) Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol 3(10):626–631CrossRef Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, Espinosa HD (2008) Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol 3(10):626–631CrossRef
5.
Zurück zum Zitat Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y (2007) Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum 78(8):085108CrossRef Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y (2007) Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum 78(8):085108CrossRef
6.
Zurück zum Zitat Naraghi M, Chasiotis I (2009) Optimization of comb-driven devices for mechanical testing of polymeric nanofibers subjected to large deformations. J Microelectromech Syst 18(5):1032–1046CrossRef Naraghi M, Chasiotis I (2009) Optimization of comb-driven devices for mechanical testing of polymeric nanofibers subjected to large deformations. J Microelectromech Syst 18(5):1032–1046CrossRef
7.
Zurück zum Zitat Kolluru PV, Chasiotis I (2015) Interplay of molecular and specimen length scales in the large deformation mechanical behavior of polystyrene nanofibers. Polymer 56:507–515CrossRef Kolluru PV, Chasiotis I (2015) Interplay of molecular and specimen length scales in the large deformation mechanical behavior of polystyrene nanofibers. Polymer 56:507–515CrossRef
8.
Zurück zum Zitat Lu Y, Song J, Huang JY, Lou J (2011) Fracture of Sub-20 nm ultrathin gold nanowires. Adv Funct Mater 21(20):3982–3989CrossRef Lu Y, Song J, Huang JY, Lou J (2011) Fracture of Sub-20 nm ultrathin gold nanowires. Adv Funct Mater 21(20):3982–3989CrossRef
9.
Zurück zum Zitat Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao SX (2013) Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat Commun 4:1742CrossRef Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao SX (2013) Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat Commun 4:1742CrossRef
10.
Zurück zum Zitat Chasiotis I, Knauss W (2002) A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp Mech 42:51–57CrossRef Chasiotis I, Knauss W (2002) A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp Mech 42:51–57CrossRef
11.
Zurück zum Zitat McCarty, Chasiotis I (2007) Description of brittle failure of non-uniform MEMS geometries. Thin Solid Films 515:3267–3276CrossRef McCarty, Chasiotis I (2007) Description of brittle failure of non-uniform MEMS geometries. Thin Solid Films 515:3267–3276CrossRef
12.
Zurück zum Zitat Boyce BL (2010) A sequential tensile method for rapid characterization of extreme-value behavior in microfabricated materials. Exp Mech 50(7):993–997CrossRef Boyce BL (2010) A sequential tensile method for rapid characterization of extreme-value behavior in microfabricated materials. Exp Mech 50(7):993–997CrossRef
13.
Zurück zum Zitat Chasiotis I, Knauss WG (2003) Experimentation at the Micron- and Submicron Scale. In: Gerberich W, Yang W (eds) Comprehensive structural integrity, vol 8, Interfacial and nanoscale failure. Elsevier Science, Oxford, pp 41–87CrossRef Chasiotis I, Knauss WG (2003) Experimentation at the Micron- and Submicron Scale. In: Gerberich W, Yang W (eds) Comprehensive structural integrity, vol 8, Interfacial and nanoscale failure. Elsevier Science, Oxford, pp 41–87CrossRef
14.
Zurück zum Zitat Chasiotis I (2010) Mechanical properties of nanomaterials. In: Blockley R, Shyy W (eds) Encyclopedia of aerospace engineering. John Wiley & Sons Ltd, Chichester, pp 2269–2276 Chasiotis I (2010) Mechanical properties of nanomaterials. In: Blockley R, Shyy W (eds) Encyclopedia of aerospace engineering. John Wiley & Sons Ltd, Chichester, pp 2269–2276
15.
Zurück zum Zitat Li C, Ruoff RS, Chou TW (2005) Modeling of carbon nanotube clamping in tensile tests. Compos Sci Technol 65(15–16):2407–2415CrossRef Li C, Ruoff RS, Chou TW (2005) Modeling of carbon nanotube clamping in tensile tests. Compos Sci Technol 65(15–16):2407–2415CrossRef
16.
Zurück zum Zitat Yu M, Lourie O, Dyer M, Moloni K, Kelly T, Ruoff R (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science (New York, NY) 287(5453):637–640CrossRef Yu M, Lourie O, Dyer M, Moloni K, Kelly T, Ruoff R (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science (New York, NY) 287(5453):637–640CrossRef
17.
Zurück zum Zitat Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43(10):2175–2185CrossRef Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43(10):2175–2185CrossRef
18.
Zurück zum Zitat Yu M, Files B, Arepalli S, Ruoff R (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555CrossRef Yu M, Files B, Arepalli S, Ruoff R (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555CrossRef
19.
Zurück zum Zitat Haque M, Saif M (2002) In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech 42(1):123–128CrossRef Haque M, Saif M (2002) In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech 42(1):123–128CrossRef
20.
Zurück zum Zitat Hosseinian E, Pierron ON (2013) Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 5(24):12532–12541CrossRef Hosseinian E, Pierron ON (2013) Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 5(24):12532–12541CrossRef
21.
Zurück zum Zitat Zussman E, Burman M (2006) Tensile deformation of electrospun nylon-6,6 nanofibers. J Polym Sci B Polym Phys 44:1482–1489CrossRef Zussman E, Burman M (2006) Tensile deformation of electrospun nylon-6,6 nanofibers. J Polym Sci B Polym Phys 44:1482–1489CrossRef
22.
Zurück zum Zitat Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y (2007) Mechanical deformation and failure of electrospun polyacrylonitrile nanofibers as a function of strain rate. Appl Phys Lett 91:151901, 3ppCrossRef Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y (2007) Mechanical deformation and failure of electrospun polyacrylonitrile nanofibers as a function of strain rate. Appl Phys Lett 91:151901, 3ppCrossRef
23.
Zurück zum Zitat Hazra SS, Baker MS, Beuth JL, de Boer MP (2009) Demonstration of an in situ onchip tensile tester. J Micromech Microeng 19(8):082001CrossRef Hazra SS, Baker MS, Beuth JL, de Boer MP (2009) Demonstration of an in situ onchip tensile tester. J Micromech Microeng 19(8):082001CrossRef
24.
Zurück zum Zitat Chen LY, Terrab S, Murphy KF, Sullivan JP, Cheng X, Gianola DS (2014) Temperature controlled tensile testing of individual nanowires. Rev Sci Instrum 85:013901, 14 ppCrossRef Chen LY, Terrab S, Murphy KF, Sullivan JP, Cheng X, Gianola DS (2014) Temperature controlled tensile testing of individual nanowires. Rev Sci Instrum 85:013901, 14 ppCrossRef
25.
Zurück zum Zitat Ding W, Dikin DA, Chen X, Piner RD, Ruoff RS, Zussman E, Wang X, Li X (2005) Mechanics of hydrogenated amorphous carbon deposits from electron-beam-induced deposition of a paraffin precursor. J Appl Phys 98:014905, 7 ppCrossRef Ding W, Dikin DA, Chen X, Piner RD, Ruoff RS, Zussman E, Wang X, Li X (2005) Mechanics of hydrogenated amorphous carbon deposits from electron-beam-induced deposition of a paraffin precursor. J Appl Phys 98:014905, 7 ppCrossRef
26.
Zurück zum Zitat Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci U S A 102(41):14503–14508CrossRef Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci U S A 102(41):14503–14508CrossRef
27.
Zurück zum Zitat Murphy KF, Chen LY, Gianola DS (2013) Effect of organometallic clamp properties on the apparent diversity of tensile response of nanowires. Nanotechnology 24:235704, 8 ppCrossRef Murphy KF, Chen LY, Gianola DS (2013) Effect of organometallic clamp properties on the apparent diversity of tensile response of nanowires. Nanotechnology 24:235704, 8 ppCrossRef
28.
Zurück zum Zitat Smith S, Walton AJ, Bond S, Ross A, Stevenson J, Gundlach AM (2003) Electrical characterization of platinum deposited by focused ion beam. IEEE Trans Semicond Manuf 16(2):199–206CrossRef Smith S, Walton AJ, Bond S, Ross A, Stevenson J, Gundlach AM (2003) Electrical characterization of platinum deposited by focused ion beam. IEEE Trans Semicond Manuf 16(2):199–206CrossRef
29.
Zurück zum Zitat Langford RM, Wang T-X, Ozkaya D (2007) Reducing the resistivity of electron and ion beam assisted deposited Pt. Microelectron Eng 84(5–8):784–788CrossRef Langford RM, Wang T-X, Ozkaya D (2007) Reducing the resistivity of electron and ion beam assisted deposited Pt. Microelectron Eng 84(5–8):784–788CrossRef
30.
Zurück zum Zitat De Teresa JM, Córdoba R, Fernández-Pacheco RA, Montero O, Strichovanec P, Ibarra MR (2009) Origin of the difference in the resistivity of as-grown focused-ion-and focused-electron-beam-induced Pt nanodeposits. J Nanomater 2009:936863, 11 ppCrossRef De Teresa JM, Córdoba R, Fernández-Pacheco RA, Montero O, Strichovanec P, Ibarra MR (2009) Origin of the difference in the resistivity of as-grown focused-ion-and focused-electron-beam-induced Pt nanodeposits. J Nanomater 2009:936863, 11 ppCrossRef
31.
Zurück zum Zitat Şahin K, Fasanella NA, Chasiotis I, Lyons KM, Newcomb BA, Kamath MG, Chae HG, Kumar S (2014) High strength micron size carbon fibers from polyacrylonitrile–carbon nanotube precursors. Carbon 77:442–453CrossRef Şahin K, Fasanella NA, Chasiotis I, Lyons KM, Newcomb BA, Kamath MG, Chae HG, Kumar S (2014) High strength micron size carbon fibers from polyacrylonitrile–carbon nanotube precursors. Carbon 77:442–453CrossRef
32.
Zurück zum Zitat Cho SW, Chasiotis I (2007) Elastic properties and representative volume element of polycrystalline silicon for MEMS. Exp Mech 47:37–49CrossRef Cho SW, Chasiotis I (2007) Elastic properties and representative volume element of polycrystalline silicon for MEMS. Exp Mech 47:37–49CrossRef
33.
Zurück zum Zitat Frisch-Fay R (1962) Flexible bars. Butterworths, WashingtonMATH Frisch-Fay R (1962) Flexible bars. Butterworths, WashingtonMATH
34.
Zurück zum Zitat Ishida M, Fujita J, Ichihashi T, Ochiai Y, Kaito T, Matsui S (2003) Focused ion beam-induced fabrication of tungsten structures. J Vac Sci Technol B 21:2728–2731CrossRef Ishida M, Fujita J, Ichihashi T, Ochiai Y, Kaito T, Matsui S (2003) Focused ion beam-induced fabrication of tungsten structures. J Vac Sci Technol B 21:2728–2731CrossRef
35.
Zurück zum Zitat Friedli V, Utke I, Mølhave K, Michler J (2009) Dose and energy dependence of mechanical properties of focused electron-beam-induced pillar deposits from Cu(C5HF6O2)2. Nanotechnology 20:385304, 11ppCrossRef Friedli V, Utke I, Mølhave K, Michler J (2009) Dose and energy dependence of mechanical properties of focused electron-beam-induced pillar deposits from Cu(C5HF6O2)2. Nanotechnology 20:385304, 11ppCrossRef
36.
Zurück zum Zitat Utke I, Hoffman P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26:1197–1276CrossRef Utke I, Hoffman P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26:1197–1276CrossRef
37.
Zurück zum Zitat Utke I, Friedli V, Fahlbusch S, Hoffmann S, Hoffman P, Michler J (2006) Tensile strengths of metal-containing joints fabricated by focused electron beam induced deposition. Adv Eng Mater 8(3):155–157CrossRef Utke I, Friedli V, Fahlbusch S, Hoffmann S, Hoffman P, Michler J (2006) Tensile strengths of metal-containing joints fabricated by focused electron beam induced deposition. Adv Eng Mater 8(3):155–157CrossRef
38.
Zurück zum Zitat Tripathi SK, Shukla N, Rajput NS, Kulkarni VN (2009) The out of beam sight effects in focused ion beam processing. Nanotechnology 20:275301, 6ppCrossRef Tripathi SK, Shukla N, Rajput NS, Kulkarni VN (2009) The out of beam sight effects in focused ion beam processing. Nanotechnology 20:275301, 6ppCrossRef
39.
Zurück zum Zitat Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):564–580CrossRef Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):564–580CrossRef
40.
Zurück zum Zitat Fischer-Cripps AC (2004) Nanoindentation. Springer, New York. Fischer-Cripps AC (2004) Nanoindentation. Springer, New York.
41.
Zurück zum Zitat Kolluru PV, Green DJ, Pantano CG, Muhlstein CL (2010) Effect of surface chemistry on the nanomechanical properties of commercial float glass. J Am Ceram Soc 93(3):838–847CrossRef Kolluru PV, Green DJ, Pantano CG, Muhlstein CL (2010) Effect of surface chemistry on the nanomechanical properties of commercial float glass. J Am Ceram Soc 93(3):838–847CrossRef
42.
Zurück zum Zitat Jonnalagadda KN, Chasiotis I, Yagnamurthy S, Lambros J, Pulskamp J, Polcawich R, Dubey M (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech 50:25–35CrossRef Jonnalagadda KN, Chasiotis I, Yagnamurthy S, Lambros J, Pulskamp J, Polcawich R, Dubey M (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech 50:25–35CrossRef
43.
Zurück zum Zitat Kempshall BW, Giannuzzi LA, Prenitzer BI, Stevie FA, Da SX (2002) Comparative evaluation of protective coatings and focused ion beam chemical vapor deposition processes. J Vac Sci Technol B Microelectron Nanometer Struct 20(1):286CrossRef Kempshall BW, Giannuzzi LA, Prenitzer BI, Stevie FA, Da SX (2002) Comparative evaluation of protective coatings and focused ion beam chemical vapor deposition processes. J Vac Sci Technol B Microelectron Nanometer Struct 20(1):286CrossRef
44.
Zurück zum Zitat Park BC, Park YC, Lee HJ, Kim YH (2010) Transmission electron microscopy study of damage layer formed through ion beam induced deposition of platinum on silicon substrate. J Vac Sci Technol B Microelectron Nanometer Struct 28(6):C6F31–C6F37 Park BC, Park YC, Lee HJ, Kim YH (2010) Transmission electron microscopy study of damage layer formed through ion beam induced deposition of platinum on silicon substrate. J Vac Sci Technol B Microelectron Nanometer Struct 28(6):C6F31–C6F37
45.
Zurück zum Zitat O’Donnell SE, Reinke P (2009) Characterization of focused-ion-beam induced defect structures in graphite for the future guided self-assembly of molecules. J Vac Sci Technol B 27:2209–2216CrossRef O’Donnell SE, Reinke P (2009) Characterization of focused-ion-beam induced defect structures in graphite for the future guided self-assembly of molecules. J Vac Sci Technol B 27:2209–2216CrossRef
46.
Zurück zum Zitat Melinon P, Hannour A, Bardotti L, Prevel B, Gierak J, Bourhis E, Faini G, Canut B (2008) Ion beam nanopatterning in graphite: characterization of single extended defects. Nanotechnology 19:235305, 9 ppCrossRef Melinon P, Hannour A, Bardotti L, Prevel B, Gierak J, Bourhis E, Faini G, Canut B (2008) Ion beam nanopatterning in graphite: characterization of single extended defects. Nanotechnology 19:235305, 9 ppCrossRef
47.
Zurück zum Zitat Raghuveer MS, Ganesan PG, Darcy-Gall J, Ramanath G, Marshall M, Petrov I (2004) Nanomachining carbon nanotubes with ion beams. Appl Phys Lett 84(22):4484–4486CrossRef Raghuveer MS, Ganesan PG, Darcy-Gall J, Ramanath G, Marshall M, Petrov I (2004) Nanomachining carbon nanotubes with ion beams. Appl Phys Lett 84(22):4484–4486CrossRef
48.
Zurück zum Zitat Honjo K (2003) Fracture toughness of PAN-based carbon fibers estimated from strength–mirror size relation. Carbon 41:979–984CrossRef Honjo K (2003) Fracture toughness of PAN-based carbon fibers estimated from strength–mirror size relation. Carbon 41:979–984CrossRef
Metadaten
Titel
Mechanical Property Experiments with Ultra-High Strength Micrometer Scale Fibers
verfasst von
K. Şahin
N. A. Fasanella
P. V. Kolluru
I. Chasiotis
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 5/2015
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-015-9990-7

Weitere Artikel der Ausgabe 5/2015

Experimental Mechanics 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.