Skip to main content
Erschienen in: Mechanics of Composite Materials 3/2022

18.07.2022

Mechanical Stability of Eccentrically Stiffened Auxetic Truncated Conical Sandwich Shells Surrounded by Elastic Foundations

verfasst von: Nguyen Dinh Duc, Duong Tuan Manh, Nguyen Dinh Khoa, Pham Dinh Nguyen

Erschienen in: Mechanics of Composite Materials | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The static stability of auxetic truncated conical sandwich shells reinforced by stiffeners surrounded by elastic foundations is investigated. The shells are made from two isotropic outer layers and an auxetic core layer with a negative Poisson ratio. Based on the classical shell theory, combined with the displacement and Bubnov–Galerkin methods, the governing equations of the shells are derived and solved. The critical buckling load of the shells as a function of their geometrical parameters, the honeycomb structure, stiffeners, and types of elastic foundations are examined in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat A. H. Sofiyev and Z. Karaca, “The vibration and buckling of laminated non-homogeneous orthotropic conical shells subjected to external pressure,” Eur. J. Mech. A-Solid., 28, 317-328 (2018).CrossRef A. H. Sofiyev and Z. Karaca, “The vibration and buckling of laminated non-homogeneous orthotropic conical shells subjected to external pressure,” Eur. J. Mech. A-Solid., 28, 317-328 (2018).CrossRef
2.
Zurück zum Zitat A. H. Sofiyev, N. Kuruoglu, and M. Turkmen, “Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure,” Thin-Walled Struct., 47, 61-72 (2009).CrossRef A. H. Sofiyev, N. Kuruoglu, and M. Turkmen, “Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure,” Thin-Walled Struct., 47, 61-72 (2009).CrossRef
3.
Zurück zum Zitat A. H. Sofiyev, “The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler–Pasternak foundations,” Int. J. Pres. Ves. Pip., 87, 753-761 (2010).CrossRef A. H. Sofiyev, “The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler–Pasternak foundations,” Int. J. Pres. Ves. Pip., 87, 753-761 (2010).CrossRef
4.
Zurück zum Zitat A. H. Sofiyev, “Influence of the initial imperfection on the non-linear buckling response of FGM truncated conical shells,” Int. J. Mech. Sci., 53, 753-761 (2011).CrossRef A. H. Sofiyev, “Influence of the initial imperfection on the non-linear buckling response of FGM truncated conical shells,” Int. J. Mech. Sci., 53, 753-761 (2011).CrossRef
5.
Zurück zum Zitat A. M. Najafov and A. H. Sofiyev, “The non-linear dynamics of FGM truncated conical shells surrounded by an elastic medium,” Int. J. Mech. Sci., 66, 33-44 (2013).CrossRef A. M. Najafov and A. H. Sofiyev, “The non-linear dynamics of FGM truncated conical shells surrounded by an elastic medium,” Int. J. Mech. Sci., 66, 33-44 (2013).CrossRef
6.
Zurück zum Zitat A. H. Sofiyev and E. Osmancelebioglu, “The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory,” Compos. Part B Eng., 120, 197-211 (2017).CrossRef A. H. Sofiyev and E. Osmancelebioglu, “The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory,” Compos. Part B Eng., 120, 197-211 (2017).CrossRef
7.
Zurück zum Zitat A. H. Sofiyev, F. Tornabene, R. Dimitri, and N. Kuruoglu, “Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading,” Nanomaterials., 10, No. 3, 1-19 (2020).CrossRef A. H. Sofiyev, F. Tornabene, R. Dimitri, and N. Kuruoglu, “Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading,” Nanomaterials., 10, No. 3, 1-19 (2020).CrossRef
8.
Zurück zum Zitat D. V. Dung, L. K. Hoa, and N. T. Nga, “On the stability of functionally graded truncated conical shells reinforced by functionally graded stiffeners and surrounded by an elastic medium,” Compos. Struct., 108, 77-90 (2014).CrossRef D. V. Dung, L. K. Hoa, and N. T. Nga, “On the stability of functionally graded truncated conical shells reinforced by functionally graded stiffeners and surrounded by an elastic medium,” Compos. Struct., 108, 77-90 (2014).CrossRef
9.
Zurück zum Zitat D. V. Dung and D. Q. Chan, “Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT,” Compos. Struct., 159, 827-841 (2017).CrossRef D. V. Dung and D. Q. Chan, “Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT,” Compos. Struct., 159, 827-841 (2017).CrossRef
10.
Zurück zum Zitat N. D. Duc and P. H. Cong, “Nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical shells surrounded on elastic foundations,” Eur. J. Mech. A-Solid., 50, 120-131 (2015).CrossRef N. D. Duc and P. H. Cong, “Nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical shells surrounded on elastic foundations,” Eur. J. Mech. A-Solid., 50, 120-131 (2015).CrossRef
11.
Zurück zum Zitat N. D. Duc, P. H. Cong, N. D. Tuan, P. Tran, and N. V. Thanh, “Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations,” Thin-Walled Struct., 115, 300-310 (2017).CrossRef N. D. Duc, P. H. Cong, N. D. Tuan, P. Tran, and N. V. Thanh, “Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations,” Thin-Walled Struct., 115, 300-310 (2017).CrossRef
12.
Zurück zum Zitat N. D. Duc, K. Seung-Eock, and D. Q. Chan, “Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT,” Therm. Stress., 41, No. 3, 331-365 (2018).CrossRef N. D. Duc, K. Seung-Eock, and D. Q. Chan, “Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT,” Therm. Stress., 41, No. 3, 331-365 (2018).CrossRef
13.
Zurück zum Zitat D. Q. Chan, P. D. Nguyen, V. D. Quang, V. T. T. Anh, and N. D. Duc, “Nonlinear buckling and post-buckling of functionally graded carbon nanotubes reinforced composite truncated conical shells subjected to axial load,” Steel. Comp. Struct., 31, No. 3, 243-259 (2019). D. Q. Chan, P. D. Nguyen, V. D. Quang, V. T. T. Anh, and N. D. Duc, “Nonlinear buckling and post-buckling of functionally graded carbon nanotubes reinforced composite truncated conical shells subjected to axial load,” Steel. Comp. Struct., 31, No. 3, 243-259 (2019).
14.
Zurück zum Zitat D. Q. Chan, V. D. Long, and N. D. Duc, “Nonlinear buckling and post-buckling of FGM shear deformable truncated conical shells reinforced by FGM stiffeners,” Mech. Compos. Mater., 54, No. 6, 754-764 (2019).CrossRef D. Q. Chan, V. D. Long, and N. D. Duc, “Nonlinear buckling and post-buckling of FGM shear deformable truncated conical shells reinforced by FGM stiffeners,” Mech. Compos. Mater., 54, No. 6, 754-764 (2019).CrossRef
15.
Zurück zum Zitat S. O. Dzhankhotov, V. A. Kireev, and N. T. Kulagin, “Experimental and theoretical study of the supporting power of longitudinally compressed slightly conical shells made of composite materials ,” Mech. Compos. Mater., 16, No. 6, 698-705 (1981).CrossRef S. O. Dzhankhotov, V. A. Kireev, and N. T. Kulagin, “Experimental and theoretical study of the supporting power of longitudinally compressed slightly conical shells made of composite materials ,” Mech. Compos. Mater., 16, No. 6, 698-705 (1981).CrossRef
16.
Zurück zum Zitat I. Yu. Babich, A. V. Boriseiko, and N. P. Semenyuk, “Stability of conical shells of metal composites beyond the elastic limit,” Mech. Compos. Mater., 37, No. 1, 1-66 (2001).CrossRef I. Yu. Babich, A. V. Boriseiko, and N. P. Semenyuk, “Stability of conical shells of metal composites beyond the elastic limit,” Mech. Compos. Mater., 37, No. 1, 1-66 (2001).CrossRef
17.
Zurück zum Zitat S. M. F. Moghaddam and H. Ahmadi, “Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator,” Thin-Walled Struct., 151, 106642 (2020).CrossRef S. M. F. Moghaddam and H. Ahmadi, “Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator,” Thin-Walled Struct., 151, 106642 (2020).CrossRef
18.
Zurück zum Zitat H. Aris and H. Ahmadi, “Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment,” Mech. Res. Commun., 104, 103499 (2020).CrossRef H. Aris and H. Ahmadi, “Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment,” Mech. Res. Commun., 104, 103499 (2020).CrossRef
19.
Zurück zum Zitat Y. Kiani, “Torsional vibration of functionally graded carbon nanotube reinforced conical shells,” Sci. Eng. Compos. Mater., 25, No. 1, 41-52 (2018).CrossRef Y. Kiani, “Torsional vibration of functionally graded carbon nanotube reinforced conical shells,” Sci. Eng. Compos. Mater., 25, No. 1, 41-52 (2018).CrossRef
20.
Zurück zum Zitat J. E. Jam and Y. Kiani, “Buckling of pressurized functionally graded carbon nanotube reinforced conical shells,” Compos. Struct., 125, 586-595 (2018).CrossRef J. E. Jam and Y. Kiani, “Buckling of pressurized functionally graded carbon nanotube reinforced conical shells,” Compos. Struct., 125, 586-595 (2018).CrossRef
21.
Zurück zum Zitat M. Mirzaei and Y. Kian, “Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells,” Aerosp. Sci. Technol., 47, 42-53 (2015).CrossRef M. Mirzaei and Y. Kian, “Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells,” Aerosp. Sci. Technol., 47, 42-53 (2015).CrossRef
22.
Zurück zum Zitat N. D. Duc and P. H. Cong, “Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs,” J. Sandw. Struct. Mater., 20, 692-717 (2018).CrossRef N. D. Duc and P. H. Cong, “Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs,” J. Sandw. Struct. Mater., 20, 692-717 (2018).CrossRef
23.
Zurück zum Zitat P. H. Cong, N. D. Khanh, N. D. Khoa, and N. D. Duc, “New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT,” Compos. Struct., 185, 455-465 (2018).CrossRef P. H. Cong, N. D. Khanh, N. D. Khoa, and N. D. Duc, “New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT,” Compos. Struct., 185, 455-465 (2018).CrossRef
24.
Zurück zum Zitat P. H. Cong, P. T. Long, N. V. Nhat, and N. D. Duc, “Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson’s ratio in auxetic honeycombs core layer,” Int. J. Mech. Sci., 152, 443-453 (2019).CrossRef P. H. Cong, P. T. Long, N. V. Nhat, and N. D. Duc, “Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson’s ratio in auxetic honeycombs core layer,” Int. J. Mech. Sci., 152, 443-453 (2019).CrossRef
25.
Zurück zum Zitat N. D. Duc, S. E. Kim, P. H. Cong, N. T. Anh, and N. D. Khoa, “Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads,” Int. J. Mech. Sci., 133, 504-512 (2017).CrossRef N. D. Duc, S. E. Kim, P. H. Cong, N. T. Anh, and N. D. Khoa, “Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads,” Int. J. Mech. Sci., 133, 504-512 (2017).CrossRef
26.
Zurück zum Zitat N. D. Duc, S. E. Kim, N. D. Tuan, P. Tran, and N. D. Khoa, “New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer,” Aerosp. Sci. Technol., 70, 396-404 (2017).CrossRef N. D. Duc, S. E. Kim, N. D. Tuan, P. Tran, and N. D. Khoa, “New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer,” Aerosp. Sci. Technol., 70, 396-404 (2017).CrossRef
28.
Zurück zum Zitat M. H. Hajmohammad, R. Kolahchi, M. S. Zarei, and A. H. Nouri, “Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory,” Int. J. Mech. Sci., 153-154, 391-401 (2019). M. H. Hajmohammad, R. Kolahchi, M. S. Zarei, and A. H. Nouri, “Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory,” Int. J. Mech. Sci., 153-154, 391-401 (2019).
29.
Zurück zum Zitat M. H. Hajmohammad, A. H. Nouri, M. S. Zarei, and R. Kolahchi, “A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment,” Eng. Comput., 35, 1141-1157 (2019).CrossRef M. H. Hajmohammad, A. H. Nouri, M. S. Zarei, and R. Kolahchi, “A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment,” Eng. Comput., 35, 1141-1157 (2019).CrossRef
30.
Zurück zum Zitat J. Liu, Y. S. Cheng, and R. F. Li, “A semi-analytical method for bending, buckling, and free vibration analyses of sandwich panels with square-honeycomb cores,” Int. J. Struct. Stab. Dyn., 10, 127-151 (2010).CrossRef J. Liu, Y. S. Cheng, and R. F. Li, “A semi-analytical method for bending, buckling, and free vibration analyses of sandwich panels with square-honeycomb cores,” Int. J. Struct. Stab. Dyn., 10, 127-151 (2010).CrossRef
31.
Zurück zum Zitat K. Di and X. B. Mao, “Free flexural vibration of honeycomb sandwich plate with negative Poisson’s ratio simple supported on opposite edges,” Acta Mater. Compos. Sin., 33, 910-920 (2016). K. Di and X. B. Mao, “Free flexural vibration of honeycomb sandwich plate with negative Poisson’s ratio simple supported on opposite edges,” Acta Mater. Compos. Sin., 33, 910-920 (2016).
32.
Zurück zum Zitat J. Zhang, X. Zhu, X. Yang, and W. Zhang, “Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads,” Int. J. Impact. Eng., 134, 103383 (2019).CrossRef J. Zhang, X. Zhu, X. Yang, and W. Zhang, “Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads,” Int. J. Impact. Eng., 134, 103383 (2019).CrossRef
33.
Zurück zum Zitat X. Jin, Z. Wang, J. Ning, G. Xiao, E. Liu, and X. Shu, “Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading,” Compos. Part B Eng., 106, 206-217 (2016).CrossRef X. Jin, Z. Wang, J. Ning, G. Xiao, E. Liu, and X. Shu, “Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading,” Compos. Part B Eng., 106, 206-217 (2016).CrossRef
34.
Zurück zum Zitat C. Qi, A. Remennikov, L. Z. Pei, S. Yang, Z. H. Yu, and T. D. Ngo, “Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations,” Compos. Struct., 180, 161-178 (2017).CrossRef C. Qi, A. Remennikov, L. Z. Pei, S. Yang, Z. H. Yu, and T. D. Ngo, “Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations,” Compos. Struct., 180, 161-178 (2017).CrossRef
35.
Zurück zum Zitat G. Imbalzano, S. Linforth, N. D. Tuan, P. V. S. Lee, and T. Phuong, “Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs,” Compos. Struct., 183, 242-261 (2018).CrossRef G. Imbalzano, S. Linforth, N. D. Tuan, P. V. S. Lee, and T. Phuong, “Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs,” Compos. Struct., 183, 242-261 (2018).CrossRef
36.
Zurück zum Zitat D. Banić, M. Bacciocchi, F. Tornabene, and A. J. M. Ferreira, “Influence of Winkler-Pasternak foundation on the vibrational behavior of plates and shells reinforced by agglomerated carbon nanotubes,” Appl. Sci., 7, No. 12, 1228 (2017).CrossRef D. Banić, M. Bacciocchi, F. Tornabene, and A. J. M. Ferreira, “Influence of Winkler-Pasternak foundation on the vibrational behavior of plates and shells reinforced by agglomerated carbon nanotubes,” Appl. Sci., 7, No. 12, 1228 (2017).CrossRef
37.
Zurück zum Zitat F. H. Roudbeneh, G. Liaghat, H. Sabouri, and H. Hadavinia, “Experimental investigation of impact loading on honeycomb sandwich panels filled with foam,” Int. J. Crashworthines., 24, No. 2, 199-210 (2018).CrossRef F. H. Roudbeneh, G. Liaghat, H. Sabouri, and H. Hadavinia, “Experimental investigation of impact loading on honeycomb sandwich panels filled with foam,” Int. J. Crashworthines., 24, No. 2, 199-210 (2018).CrossRef
38.
Zurück zum Zitat F. H. Roudbeneh, G. Liaghat, H. Sabouri, and H. Hadavinia, “Experimental investigation of quasistatic penetration tests on honeycomb sandwich panels filled with polymer foam,” Mech. Adv. Mater. Struct., 27, No. 21, 1803-1815 (2018).CrossRef F. H. Roudbeneh, G. Liaghat, H. Sabouri, and H. Hadavinia, “Experimental investigation of quasistatic penetration tests on honeycomb sandwich panels filled with polymer foam,” Mech. Adv. Mater. Struct., 27, No. 21, 1803-1815 (2018).CrossRef
39.
Zurück zum Zitat T. C. Lim, “Vibration of thick auxetic plates,” Mech. Res., Commun., 61, 60-66 (2014).CrossRef T. C. Lim, “Vibration of thick auxetic plates,” Mech. Res., Commun., 61, 60-66 (2014).CrossRef
40.
Zurück zum Zitat F. Tornabene, “General higher order layer-wise theory for free vibrations of doubly-curved laminated composite shells and panels,” Mech. Adv. Mater. Struct., 23, No. 9, 1046-1067 (2016).CrossRef F. Tornabene, “General higher order layer-wise theory for free vibrations of doubly-curved laminated composite shells and panels,” Mech. Adv. Mater. Struct., 23, No. 9, 1046-1067 (2016).CrossRef
41.
Zurück zum Zitat S. V. Shil’ko, E. M. Petrokovets, and Yu. M. Pleskachevskii, “An analysis of contact deformation of auxetic composites,” Mech. Compos. Mater., 42, No. 5, 477-484 (2006).CrossRef S. V. Shil’ko, E. M. Petrokovets, and Yu. M. Pleskachevskii, “An analysis of contact deformation of auxetic composites,” Mech. Compos. Mater., 42, No. 5, 477-484 (2006).CrossRef
42.
Zurück zum Zitat C. Li, H. S. Shen, and H. Wang, “Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core,” Nonlinear. Dyn., 100, 3235-3252 (2020).CrossRef C. Li, H. S. Shen, and H. Wang, “Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core,” Nonlinear. Dyn., 100, 3235-3252 (2020).CrossRef
43.
Zurück zum Zitat C. Li, H. S. Shen, H. Wang, and Z. Yu, “Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core,” Int. J. Mech. Sci., 174, 105472 (2020).CrossRef C. Li, H. S. Shen, H. Wang, and Z. Yu, “Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core,” Int. J. Mech. Sci., 174, 105472 (2020).CrossRef
45.
Zurück zum Zitat C. Li, H. S. Shen, and H. Wang, “Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core,” Compos. Struct., 237, 111894 (2020).CrossRef C. Li, H. S. Shen, and H. Wang, “Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core,” Compos. Struct., 237, 111894 (2020).CrossRef
47.
48.
Zurück zum Zitat H. Eipakchi and F. M. Nasrekani, “Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure,” Compos. Struct., 254, 112847 (2020).CrossRef H. Eipakchi and F. M. Nasrekani, “Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure,” Compos. Struct., 254, 112847 (2020).CrossRef
49.
Zurück zum Zitat D. Q. Tian and Y. Z. Chun, “Wave propagation in sandwich panel with auxetic core,” J. Solid. Mech., 2, 393-402 (2010). D. Q. Tian and Y. Z. Chun, “Wave propagation in sandwich panel with auxetic core,” J. Solid. Mech., 2, 393-402 (2010).
50.
Zurück zum Zitat A. B. Brush, Buckling of Bars, Plates, and Shells, McGraw-Hill, New York (1975).CrossRef A. B. Brush, Buckling of Bars, Plates, and Shells, McGraw-Hill, New York (1975).CrossRef
51.
Zurück zum Zitat R. Naj, M. S. Boroujerdy, and M. R. Eslami, “Thermal and mechanical instability of functionally graded truncated conical shells,” Thin-Walled Struct., 46, 65-78 (2008).CrossRef R. Naj, M. S. Boroujerdy, and M. R. Eslami, “Thermal and mechanical instability of functionally graded truncated conical shells,” Thin-Walled Struct., 46, 65-78 (2008).CrossRef
52.
Zurück zum Zitat P. Seide, “Buckling of circular cones under axial compression,” J. Appl. Mech., 28, No. 2, 315-326 (1961).CrossRef P. Seide, “Buckling of circular cones under axial compression,” J. Appl. Mech., 28, No. 2, 315-326 (1961).CrossRef
Metadaten
Titel
Mechanical Stability of Eccentrically Stiffened Auxetic Truncated Conical Sandwich Shells Surrounded by Elastic Foundations
verfasst von
Nguyen Dinh Duc
Duong Tuan Manh
Nguyen Dinh Khoa
Pham Dinh Nguyen
Publikationsdatum
18.07.2022
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 3/2022
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10035-0

Weitere Artikel der Ausgabe 3/2022

Mechanics of Composite Materials 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.