Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2019

19.08.2019

Mechanical Surface Treatments of AISI 304 Stainless Steel: Effects on Surface Microrelief, Residual Stress, and Microstructure

verfasst von: D. A. Lesyk, H. Soyama, B. N. Mordyuk, V. V. Dzhemelinskyi, S. Martinez, N. I. Khripta, A. Lamikiz

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The surface roughness, residual stress, and microstructure of AISI 304 stainless steel specimens after laser shock peening (LSP), water jet cavitation peening (WjCP), water jet shot peening (WjSP), and multi-pin ultrasonic impact treatment (UIT) were studied in this work. Compared to the initial state, the surface roughness (Ra) was, respectively, decreased by approx. 5.5, 7.8, 38.2, and 91.1% after the LSP, WjCP, WjSP, and UIT processes. The volume fraction of ε-martensite of ~ 3-5% was observed in all treated specimens except for the LSP-treated ones. The volume fraction of α′-martensite was increased in the following sequence: WjCP (~ 5%), LSP (~ 5%), WjSP (~ 25%), UIT (~ 50%). The studied mechanical surface treatments promote a significant reduction in grains size of both austenite (~ 15-20 nm) and martensite (~ 20-37 nm) leading to essential hardening. All studied processes result in the formation of compressive residual stresses (− 377…693 MPa) and the improvement in the bearing curve parameters. The microhardness estimated accounting for the contributions of different hardening mechanisms to the yield strength magnitude correlates well with the experimental data. The grain boundary hardening and dislocation hardening are concluded to be the most influential mechanisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Epp and H.W. Zoch, Comparison of Alternative Peening Methods for the Improvement of Fatigue Properties of Case-Hardened Steel Parts, J. Heat Treat. Mater., 2016, 71, p 109–116CrossRef J. Epp and H.W. Zoch, Comparison of Alternative Peening Methods for the Improvement of Fatigue Properties of Case-Hardened Steel Parts, J. Heat Treat. Mater., 2016, 71, p 109–116CrossRef
2.
Zurück zum Zitat R. Sonntag, J. Reinders, J. Gibmeier, and J.P. Kretzer, Fatigue Performance of Medical Ti6Al4V Alloy After Mechanical Surface Treatments, PLoS ONE, 2015, 10(3), p e0121963CrossRef R. Sonntag, J. Reinders, J. Gibmeier, and J.P. Kretzer, Fatigue Performance of Medical Ti6Al4V Alloy After Mechanical Surface Treatments, PLoS ONE, 2015, 10(3), p e0121963CrossRef
3.
Zurück zum Zitat A. Azhari, S. Sulaiman, and A.K.P. Rao, A Review on the Application of Peening Processes for Surface Treatment, in Proceedings of IOP Conference Series: Materials Science Engineering, vol. 114 (2016), p 012002CrossRef A. Azhari, S. Sulaiman, and A.K.P. Rao, A Review on the Application of Peening Processes for Surface Treatment, in Proceedings of IOP Conference Series: Materials Science Engineering, vol. 114 (2016), p 012002CrossRef
4.
Zurück zum Zitat A.K. Gujba and M. Medraj, Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening, Materials, 2014, 7, p 7925–7974CrossRef A.K. Gujba and M. Medraj, Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening, Materials, 2014, 7, p 7925–7974CrossRef
5.
Zurück zum Zitat I. Nikitin and I. Altenberger, Comparison of the Fatigue Behavior and Residual Stress Stability Of Laser-Shock Peened and Deep Rolled Austenitic Stainless Steel AISI, 304 in the Temperature Range 25–600 °C, Mater. Sci. Eng. A, 2007, 465, p 176–182CrossRef I. Nikitin and I. Altenberger, Comparison of the Fatigue Behavior and Residual Stress Stability Of Laser-Shock Peened and Deep Rolled Austenitic Stainless Steel AISI, 304 in the Temperature Range 25–600 °C, Mater. Sci. Eng. A, 2007, 465, p 176–182CrossRef
6.
Zurück zum Zitat P. Peyre, N. Hfaiedh, H. Song, V. Ji, V. Vignal, W. Seiler, and S. Branly, Laser Shock Processing with Two Different Laser Sources on 2050‐T8 Aluminum Alloy, Int. J. Struct. Integrity, 2011, 2, p 87–100CrossRef P. Peyre, N. Hfaiedh, H. Song, V. Ji, V. Vignal, W. Seiler, and S. Branly, Laser Shock Processing with Two Different Laser Sources on 2050‐T8 Aluminum Alloy, Int. J. Struct. Integrity, 2011, 2, p 87–100CrossRef
7.
Zurück zum Zitat H. Lim, M. Lee, P. Kim, and S. Jeong, Laser Shock Peening of AISI, 304 Stainless Steel for the Application to Seawater Desalination Pump Components, Desalin. Water Treat., 2012, 33, p 255–260CrossRef H. Lim, M. Lee, P. Kim, and S. Jeong, Laser Shock Peening of AISI, 304 Stainless Steel for the Application to Seawater Desalination Pump Components, Desalin. Water Treat., 2012, 33, p 255–260CrossRef
8.
Zurück zum Zitat U. Trdan, J.A. Porro, J.L. Ocana, and J. Grum, Laser Shock Peening Without Absorbent Coating (LSPwC) Effect on 3D Surface Topography and Mechanical Properties of 6082-T651 Al Alloy, Surf. Coat. Technol., 2012, 208, p 109–116CrossRef U. Trdan, J.A. Porro, J.L. Ocana, and J. Grum, Laser Shock Peening Without Absorbent Coating (LSPwC) Effect on 3D Surface Topography and Mechanical Properties of 6082-T651 Al Alloy, Surf. Coat. Technol., 2012, 208, p 109–116CrossRef
9.
Zurück zum Zitat A. Telang, T.G. Herold, A. Gill, and V.K. Vasudevan, Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600, J. Mater. Eng. Perform., 2016, 27, p 2796–2804CrossRef A. Telang, T.G. Herold, A. Gill, and V.K. Vasudevan, Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600, J. Mater. Eng. Perform., 2016, 27, p 2796–2804CrossRef
10.
Zurück zum Zitat H. Soyama, Key Factors and Applications of Cavitation Peening, Int. J. Peen. Sci. Technol. A, 2017, 1, p 3–60 H. Soyama, Key Factors and Applications of Cavitation Peening, Int. J. Peen. Sci. Technol. A, 2017, 1, p 3–60
11.
Zurück zum Zitat D. Odhiambo and H. Soyama, Cavitation Shotless Peening for Improvement of Fatigue Strength of Carbonized Steel, Int. J. Fatigue, 2003, 25, p 1217–1222CrossRef D. Odhiambo and H. Soyama, Cavitation Shotless Peening for Improvement of Fatigue Strength of Carbonized Steel, Int. J. Fatigue, 2003, 25, p 1217–1222CrossRef
12.
Zurück zum Zitat M. Mobin, M. Mobin, and Z. Li, Multi-response Optimisation of Cavitation Peening Parameters for Improving Fatigue Performance Using the Desirability Function Approach, Int. J. Appl. Decis. Sci., 2016, 9, p 080124 M. Mobin, M. Mobin, and Z. Li, Multi-response Optimisation of Cavitation Peening Parameters for Improving Fatigue Performance Using the Desirability Function Approach, Int. J. Appl. Decis. Sci., 2016, 9, p 080124
13.
Zurück zum Zitat S. Kanou, O. Takakuwa, S.R. Mannava, D. Qian, V.K. Vasudevan, and H. Soyama, Effect of the Impact Energy of Various Peening Techniques on the Induced Plastic Deformation Region, J. Mater. Proc. Technol., 2012, 212, p 1998–2006CrossRef S. Kanou, O. Takakuwa, S.R. Mannava, D. Qian, V.K. Vasudevan, and H. Soyama, Effect of the Impact Energy of Various Peening Techniques on the Induced Plastic Deformation Region, J. Mater. Proc. Technol., 2012, 212, p 1998–2006CrossRef
14.
Zurück zum Zitat M. Chaib, M. Belhamiani, A. Megueni, A. Ziadi, and F.J. Belzunce, Experimental Study of Shot Peening Effect on the Surface of Austenitic Stainless Steels: Roughness, Residual Stresses and Work Hardening, Int. J. Mater. Process. Technol., 2016, 53, p 298–308CrossRef M. Chaib, M. Belhamiani, A. Megueni, A. Ziadi, and F.J. Belzunce, Experimental Study of Shot Peening Effect on the Surface of Austenitic Stainless Steels: Roughness, Residual Stresses and Work Hardening, Int. J. Mater. Process. Technol., 2016, 53, p 298–308CrossRef
15.
Zurück zum Zitat M. Tsujikawa, M. Egawa, T. Sone, N. Ueda, T. Okano, and K. Higashi, Modification of S Phase on Austenitic Stainless Steel Using Fine Particle Shot Peening, Surf. Coat. Technol., 2013, 228, p 318–322CrossRef M. Tsujikawa, M. Egawa, T. Sone, N. Ueda, T. Okano, and K. Higashi, Modification of S Phase on Austenitic Stainless Steel Using Fine Particle Shot Peening, Surf. Coat. Technol., 2013, 228, p 318–322CrossRef
16.
Zurück zum Zitat X. Wei, D. Zhu, X. Ling, L. Yu, and M. Dai, Influence of Wet Micro-shot Peening on Surface Properties and Corrosion Resistance of AISI, 304 Stainless Steel, Int. J. Electrochem. Sci., 2018, 13, p 4198–4207CrossRef X. Wei, D. Zhu, X. Ling, L. Yu, and M. Dai, Influence of Wet Micro-shot Peening on Surface Properties and Corrosion Resistance of AISI, 304 Stainless Steel, Int. J. Electrochem. Sci., 2018, 13, p 4198–4207CrossRef
17.
Zurück zum Zitat K. Zhan, C.H. Jiang, and V. Ji, Effect of Prestress State on Surface Layer Characteristic of S30432 Austenitic Stainless Steel in Shot Peening Process, Mater. Des., 2012, 42, p 89–93CrossRef K. Zhan, C.H. Jiang, and V. Ji, Effect of Prestress State on Surface Layer Characteristic of S30432 Austenitic Stainless Steel in Shot Peening Process, Mater. Des., 2012, 42, p 89–93CrossRef
18.
Zurück zum Zitat A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, and J. Lu, The Influence of Strain Rate on the Microstructure Transition of 304 Stainless Steel, Acta Mater., 2011, 59, p 3697–3709CrossRef A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, and J. Lu, The Influence of Strain Rate on the Microstructure Transition of 304 Stainless Steel, Acta Mater., 2011, 59, p 3697–3709CrossRef
19.
Zurück zum Zitat P.K. Rai, V. Pandey, K. Chattopadhyay, L.K. Singhal, and V. Singh, Effect of Ultrasonic Shot Peening on Microstructure and Mechanical Properties of High-Nitrogen Austenitic Stainless Steel, J. Mater. Eng. Perform., 2014, 23, p 4055–4064CrossRef P.K. Rai, V. Pandey, K. Chattopadhyay, L.K. Singhal, and V. Singh, Effect of Ultrasonic Shot Peening on Microstructure and Mechanical Properties of High-Nitrogen Austenitic Stainless Steel, J. Mater. Eng. Perform., 2014, 23, p 4055–4064CrossRef
20.
Zurück zum Zitat D.A. Lesyk, B.N. Mordyuk, V.V. Dzhemelinskyi, G.I. Prokopenko, and O.O. Danyleiko, Influence of Ultrasonic Impact Treatment on Surface Topography and Microstructure of AISI 321 Stainless Steel, Sci. Rev., 2018, 2, p 3–8 D.A. Lesyk, B.N. Mordyuk, V.V. Dzhemelinskyi, G.I. Prokopenko, and O.O. Danyleiko, Influence of Ultrasonic Impact Treatment on Surface Topography and Microstructure of AISI 321 Stainless Steel, Sci. Rev., 2018, 2, p 3–8
21.
Zurück zum Zitat X. Yang, X. Ling, and J. Zhou, Optimization of the Fatigue Resistance of AISI304 Stainless Steel by Ultrasonic Impact Treatment, Int. J. Fatigue, 2014, 61, p 28–38CrossRef X. Yang, X. Ling, and J. Zhou, Optimization of the Fatigue Resistance of AISI304 Stainless Steel by Ultrasonic Impact Treatment, Int. J. Fatigue, 2014, 61, p 28–38CrossRef
22.
Zurück zum Zitat L. Li, M. Kim, S. Lee, M. Bae, and D. Lee, Influence of Multiple Ultrasonic Impact Treatments on Surface Roughness and Wear Performance of SUS301 Steel, Surf. Coat. Technol., 2016, 307, p 517–524CrossRef L. Li, M. Kim, S. Lee, M. Bae, and D. Lee, Influence of Multiple Ultrasonic Impact Treatments on Surface Roughness and Wear Performance of SUS301 Steel, Surf. Coat. Technol., 2016, 307, p 517–524CrossRef
23.
Zurück zum Zitat X. Yang, X. Wang, X. Ling, and D. Wang, Enhanced Mechanical Behaviors of Gradient Nano-grained Austenite Stainless Steel by Means of Ultrasonic Impact Treatment, Results Phys., 2017, 7, p 1412–1421CrossRef X. Yang, X. Wang, X. Ling, and D. Wang, Enhanced Mechanical Behaviors of Gradient Nano-grained Austenite Stainless Steel by Means of Ultrasonic Impact Treatment, Results Phys., 2017, 7, p 1412–1421CrossRef
24.
Zurück zum Zitat M. Yasuoka, P. Wang, K. Zhang, Z. Qiu, K. Kusaka, Y.S. Pyoun, and R. Murakami, Improvement of the Fatigue Strength of SUS304 Austenite Stainless Steel Using Ultrasonic Nanocrystal Surface Modification, Surf. Coat. Technol., 2013, 218, p 93–98CrossRef M. Yasuoka, P. Wang, K. Zhang, Z. Qiu, K. Kusaka, Y.S. Pyoun, and R. Murakami, Improvement of the Fatigue Strength of SUS304 Austenite Stainless Steel Using Ultrasonic Nanocrystal Surface Modification, Surf. Coat. Technol., 2013, 218, p 93–98CrossRef
25.
Zurück zum Zitat A. Cherif, Y. Pyoun, and B. Scholtes, Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on Residual Stress State and Fatigue Strength of AISI, 304, J. Mater. Eng. Perform., 2010, 19, p 282–286CrossRef A. Cherif, Y. Pyoun, and B. Scholtes, Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on Residual Stress State and Fatigue Strength of AISI, 304, J. Mater. Eng. Perform., 2010, 19, p 282–286CrossRef
26.
Zurück zum Zitat A. Gill, A. Telang, S.R. Mannava, D. Qian, Y.S. Pyoun, H. Soyama, and V.K. Vasudevan, Comparison of Mechanisms of Advanced Mechanical Surface Treatments in Nickel-Based Superalloy, Mater. Sci. Eng. A, 2013, 576, p 346–355CrossRef A. Gill, A. Telang, S.R. Mannava, D. Qian, Y.S. Pyoun, H. Soyama, and V.K. Vasudevan, Comparison of Mechanisms of Advanced Mechanical Surface Treatments in Nickel-Based Superalloy, Mater. Sci. Eng. A, 2013, 576, p 346–355CrossRef
27.
Zurück zum Zitat D.A. Lesyk, S. Martinez, V.V. Dzhemelinskyi, A. Lamikiz, B.N. Mordyuk, and G.I. Prokopenko, Surface Microrelief and Hardness of Laser Hardened and Ultrasonically Peened AISI, D2 Tool Steel, Surf. Coat. Technol., 2015, 278, p 108–120CrossRef D.A. Lesyk, S. Martinez, V.V. Dzhemelinskyi, A. Lamikiz, B.N. Mordyuk, and G.I. Prokopenko, Surface Microrelief and Hardness of Laser Hardened and Ultrasonically Peened AISI, D2 Tool Steel, Surf. Coat. Technol., 2015, 278, p 108–120CrossRef
28.
Zurück zum Zitat D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, and G.I. Prokopenko, Effects of Laser Heat Treatment Combined with Ultrasonic Impact Treatment on the Surface Topography and Hardness of Carbon Steel AISI, 1045, Opt. Laser Technol., 2019, 111, p 97–107CrossRef D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, and G.I. Prokopenko, Effects of Laser Heat Treatment Combined with Ultrasonic Impact Treatment on the Surface Topography and Hardness of Carbon Steel AISI, 1045, Opt. Laser Technol., 2019, 111, p 97–107CrossRef
29.
Zurück zum Zitat X. Yang, J. Zhou, and X. Ling, Study on Plastic Damage of AISI, 304 Stainless Steel Induced by Ultrasonic Impact Treatment, Mater. Des., 2012, 36, p 477–481CrossRef X. Yang, J. Zhou, and X. Ling, Study on Plastic Damage of AISI, 304 Stainless Steel Induced by Ultrasonic Impact Treatment, Mater. Des., 2012, 36, p 477–481CrossRef
30.
Zurück zum Zitat D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, YuV Milman, and K.E. Grinkevych, Microstructure Related Enhancement in Wear Resistance of Tool Steel AISI, D2 by Applying Laser Heat Treatment Followed by Ultrasonic Impact Treatment, Surf. Coat. Technol., 2017, 328, p 344–354CrossRef D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, YuV Milman, and K.E. Grinkevych, Microstructure Related Enhancement in Wear Resistance of Tool Steel AISI, D2 by Applying Laser Heat Treatment Followed by Ultrasonic Impact Treatment, Surf. Coat. Technol., 2017, 328, p 344–354CrossRef
31.
Zurück zum Zitat M. Turski, S. Clitheroe, A.D. Evans, C. Rodopoulos, D.J. Hughes, and P.J. Withers, Engineering the Residual Stress State and Microstructure of Stainless Steel with Mechanical Surface Treatments, Appl. Phys. A, 2010, 99, p 549–556CrossRef M. Turski, S. Clitheroe, A.D. Evans, C. Rodopoulos, D.J. Hughes, and P.J. Withers, Engineering the Residual Stress State and Microstructure of Stainless Steel with Mechanical Surface Treatments, Appl. Phys. A, 2010, 99, p 549–556CrossRef
32.
Zurück zum Zitat B.N. Mordyuk, YuV Milman, M.O. Iefimov, G.I. Prokopenko, V.V. Silberschmidt, M.I. Danylenko, and A.V. Kotko, Characterization of Ultrasonically Peened and Laser-Shock Peening Surface Layers of AISI, 321 Stainless Steel, Surf. Coat. Technol., 2008, 202, p 4875–4883CrossRef B.N. Mordyuk, YuV Milman, M.O. Iefimov, G.I. Prokopenko, V.V. Silberschmidt, M.I. Danylenko, and A.V. Kotko, Characterization of Ultrasonically Peened and Laser-Shock Peening Surface Layers of AISI, 321 Stainless Steel, Surf. Coat. Technol., 2008, 202, p 4875–4883CrossRef
33.
Zurück zum Zitat D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, K.E. Grinkevych, and I.V. Tkachenko, Laser Hardened and Ultrasonically Peened Surface Layers on Tool Steel AISI, D2: Correlation of the Bearing Curves’ Parameters, Hardness and Wear, J. Mater. Eng. Perform., 2018, 27, p 764–776CrossRef D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, K.E. Grinkevych, and I.V. Tkachenko, Laser Hardened and Ultrasonically Peened Surface Layers on Tool Steel AISI, D2: Correlation of the Bearing Curves’ Parameters, Hardness and Wear, J. Mater. Eng. Perform., 2018, 27, p 764–776CrossRef
34.
Zurück zum Zitat B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, and M.O. Iefimov, Effect of Structure Evolution Induced by Ultrasonic Peening on the Corrosion Behavior of AISI-321 Stainless Steel, Mater. Sci. Eng. A, 2007, 458, p 253–261CrossRef B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, and M.O. Iefimov, Effect of Structure Evolution Induced by Ultrasonic Peening on the Corrosion Behavior of AISI-321 Stainless Steel, Mater. Sci. Eng. A, 2007, 458, p 253–261CrossRef
35.
Zurück zum Zitat Y. Shadangi, K. Chattopadhyay, S.B. Rai, and V. Singh, Effect of Laser Shock Peening on Microstructure, Mechanical Properties and Corrosion Behavior of Interstitial Free Steel, Surf. Coat. Technol., 2015, 280, p 216–224CrossRef Y. Shadangi, K. Chattopadhyay, S.B. Rai, and V. Singh, Effect of Laser Shock Peening on Microstructure, Mechanical Properties and Corrosion Behavior of Interstitial Free Steel, Surf. Coat. Technol., 2015, 280, p 216–224CrossRef
36.
Zurück zum Zitat A. King, A. Steuwer, C. Woodward, and P.J. Withers, Effects of Fatigue and Fretting on Residual Stresses Introduced by Laser Shock Peening, Mater. Sci. Eng. A, 2019, 435–436, p 12–18 A. King, A. Steuwer, C. Woodward, and P.J. Withers, Effects of Fatigue and Fretting on Residual Stresses Introduced by Laser Shock Peening, Mater. Sci. Eng. A, 2019, 435–436, p 12–18
37.
Zurück zum Zitat H. Soyama, Comparison Between the Improvements Made to the Fatigue Strength of Stainless Steel by Cavitation Peening, Water Jet Peening, Shot Peening and Laser Peening, J. Mater. Proc. Technol., 2019, 269, p 65–78CrossRef H. Soyama, Comparison Between the Improvements Made to the Fatigue Strength of Stainless Steel by Cavitation Peening, Water Jet Peening, Shot Peening and Laser Peening, J. Mater. Proc. Technol., 2019, 269, p 65–78CrossRef
38.
Zurück zum Zitat A. Naito, O. Takakuwa, and H. Soyama, Development of Peening Technique Using Recirculating Shot Accelerated by Water Jet, J. Mater. Sci. Technol., 2012, 28, p 234–239CrossRef A. Naito, O. Takakuwa, and H. Soyama, Development of Peening Technique Using Recirculating Shot Accelerated by Water Jet, J. Mater. Sci. Technol., 2012, 28, p 234–239CrossRef
39.
Zurück zum Zitat O. Takakuwa and H. Soyama, Optimizing the Conditions for Residual Stress Measurement Using a Two-Dimensional XRD Method with Specimen Oscillation, Adv. Mater. Phys. Chem, 2013, 3, p 8–18CrossRef O. Takakuwa and H. Soyama, Optimizing the Conditions for Residual Stress Measurement Using a Two-Dimensional XRD Method with Specimen Oscillation, Adv. Mater. Phys. Chem, 2013, 3, p 8–18CrossRef
40.
Zurück zum Zitat B.N. Mordyuk, M.O. Iefimov, G.I. Prokopenko, T.V. Golub, and M.I. Danylenko, Structure, Microhardness and Damping Characteristics of Al Matrix Composite Reinforced with AlCuFe or Ti Using Ultrasonic Impact Peening, Surf. Coat. Technol., 2010, 204, p 1590–1598CrossRef B.N. Mordyuk, M.O. Iefimov, G.I. Prokopenko, T.V. Golub, and M.I. Danylenko, Structure, Microhardness and Damping Characteristics of Al Matrix Composite Reinforced with AlCuFe or Ti Using Ultrasonic Impact Peening, Surf. Coat. Technol., 2010, 204, p 1590–1598CrossRef
41.
Zurück zum Zitat K.Y. Luo, H.X. Yao, F.Z. Dai, and J.Z. Lu, Surface Textural Features and Its Formation Process of AISI, 304 Stainless Steel Subjected to Massive LSP Impacts, Corros. Sci., 2009, 51, p 2826–2830CrossRef K.Y. Luo, H.X. Yao, F.Z. Dai, and J.Z. Lu, Surface Textural Features and Its Formation Process of AISI, 304 Stainless Steel Subjected to Massive LSP Impacts, Corros. Sci., 2009, 51, p 2826–2830CrossRef
42.
Zurück zum Zitat H.S. Lee, D.S. Kim, J.S. Jung, Y.S. Pyoun, and K. Shin, Influence of Peening on the Corrosion Properties of AISI, 304 Stainless Steel, Opt. Laser Technol., 2014, 55, p 136–142CrossRef H.S. Lee, D.S. Kim, J.S. Jung, Y.S. Pyoun, and K. Shin, Influence of Peening on the Corrosion Properties of AISI, 304 Stainless Steel, Opt. Laser Technol., 2014, 55, p 136–142CrossRef
43.
Zurück zum Zitat J.Z. Lu, W.W. Deng, K.Y. Luo, L.J. Wu, and H.F. Lu, Surface EBSD Analysis and Strengthening Mechanism of AISI304 Stainless Steel Subjected to Massive LSP Treatment with Different Pulse Energies, Mater. Charact., 2017, 125, p 99–107CrossRef J.Z. Lu, W.W. Deng, K.Y. Luo, L.J. Wu, and H.F. Lu, Surface EBSD Analysis and Strengthening Mechanism of AISI304 Stainless Steel Subjected to Massive LSP Treatment with Different Pulse Energies, Mater. Charact., 2017, 125, p 99–107CrossRef
44.
Zurück zum Zitat R.K. Wang, Z.J. Zheng, and Y. Gao, Effect of Shot Peening on the Intergranular Corrosion Susceptibility of a Novel Super304H Austenitic Stainless Steel, J. Mater. Eng. Perform., 2016, 25, p 20–28CrossRef R.K. Wang, Z.J. Zheng, and Y. Gao, Effect of Shot Peening on the Intergranular Corrosion Susceptibility of a Novel Super304H Austenitic Stainless Steel, J. Mater. Eng. Perform., 2016, 25, p 20–28CrossRef
45.
Zurück zum Zitat C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K. Wiezorek, Z. Zhou, D. Qian, S.R. Mannava, and V.K. Vasudevan, Gradient Nanostructure and Residual Stresses Induced by UNSM in 304 Austenitic Stainless Steel for High Strength and High Ductility, Mater. Sci. Eng. A, 2014, 613, p 274–288CrossRef C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K. Wiezorek, Z. Zhou, D. Qian, S.R. Mannava, and V.K. Vasudevan, Gradient Nanostructure and Residual Stresses Induced by UNSM in 304 Austenitic Stainless Steel for High Strength and High Ductility, Mater. Sci. Eng. A, 2014, 613, p 274–288CrossRef
46.
Zurück zum Zitat M.A. Vasylyev, B.N. Mordyuk, S.I. Sidorenko, S.M. Voloshko, and A.P. Burmak, Influence of Microstructural Features and Deformation-Induced Martensite on Hardening of Stainless Steel by Cryogenic UIT, Surf. Coat. Technol., 2018, 343, p 57–68CrossRef M.A. Vasylyev, B.N. Mordyuk, S.I. Sidorenko, S.M. Voloshko, and A.P. Burmak, Influence of Microstructural Features and Deformation-Induced Martensite on Hardening of Stainless Steel by Cryogenic UIT, Surf. Coat. Technol., 2018, 343, p 57–68CrossRef
47.
Zurück zum Zitat E. Maawad, H.G. Brokmeier, L. Wagner, Y. Sano, and C. Genzel, Investigation on the Surface and Near-Surface Characteristics of Ti-2.5Cu After Various Mechanical Surface Treatments, Surf. Coat. Technol., 2011, 205, p 3644–3650CrossRef E. Maawad, H.G. Brokmeier, L. Wagner, Y. Sano, and C. Genzel, Investigation on the Surface and Near-Surface Characteristics of Ti-2.5Cu After Various Mechanical Surface Treatments, Surf. Coat. Technol., 2011, 205, p 3644–3650CrossRef
48.
Zurück zum Zitat M. Shirdel, H. Mirzadeh, and M.H. Parsa, Nano/Ultrafine Grained Austenitic Stainless Steel through the Formation and Reversion of Deformation-Induced Martensite: Mechanisms, Microstructures, Mechanical Properties, and TRIP Effect, Mater. Charact., 2015, 103, p 150–161CrossRef M. Shirdel, H. Mirzadeh, and M.H. Parsa, Nano/Ultrafine Grained Austenitic Stainless Steel through the Formation and Reversion of Deformation-Induced Martensite: Mechanisms, Microstructures, Mechanical Properties, and TRIP Effect, Mater. Charact., 2015, 103, p 150–161CrossRef
49.
Zurück zum Zitat L.M. Lobanov, P.P. Mikheev, G.I. Prokopenko, V.V. Knysh, Y.F. Kudryavtsev, J.I. Kleiman, and B.M. Mordyuk, Method for Processing Welded Metal Work Joints by High-Frequency Hummering, US Patent Appl. Publ. US2004024488A1 (2004) L.M. Lobanov, P.P. Mikheev, G.I. Prokopenko, V.V. Knysh, Y.F. Kudryavtsev, J.I. Kleiman, and B.M. Mordyuk, Method for Processing Welded Metal Work Joints by High-Frequency Hummering, US Patent Appl. Publ. US2004024488A1 (2004)
50.
Zurück zum Zitat V.V. Dzhemelinskyi, D.A. Lesyk, O.O. Goncharuk, and O.O. Danyleiko, Surface Hardening and Finishing of Metallic Products by Hybrid Laser-Ultrasonic Treatment, Eastern-European J. Enterprise Technol., 2018, 1/12(91), p 35–42CrossRef V.V. Dzhemelinskyi, D.A. Lesyk, O.O. Goncharuk, and O.O. Danyleiko, Surface Hardening and Finishing of Metallic Products by Hybrid Laser-Ultrasonic Treatment, Eastern-European J. Enterprise Technol., 2018, 1/12(91), p 35–42CrossRef
51.
Zurück zum Zitat D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, and O.O. Danyleiko, Combined Laser-Ultrasonic Surface Hardening Process for Improving the Properties of Metallic Products, in DSMIE 2018, LNME, eds. V. Ivanov et al. (2019), p 97–107 D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, and O.O. Danyleiko, Combined Laser-Ultrasonic Surface Hardening Process for Improving the Properties of Metallic Products, in DSMIE 2018, LNME, eds. V. Ivanov et al. (2019), p 97–107
52.
Zurück zum Zitat R. Sundar, P. Ganesh, B. Sunil Kumar, R.K. Gupta, D.C. Nagpure, R. Kaul, K. Ranganathan, K.S. Bindra, V. Kain, S.M. Oak, and B. Singh, Mitigation of Stress Corrosion Cracking Susceptibility of Machined 304L Stainless Steel through Laser Peening, J. Mater. Eng. Perform., 2016, 25, p 3710–3724CrossRef R. Sundar, P. Ganesh, B. Sunil Kumar, R.K. Gupta, D.C. Nagpure, R. Kaul, K. Ranganathan, K.S. Bindra, V. Kain, S.M. Oak, and B. Singh, Mitigation of Stress Corrosion Cracking Susceptibility of Machined 304L Stainless Steel through Laser Peening, J. Mater. Eng. Perform., 2016, 25, p 3710–3724CrossRef
53.
Zurück zum Zitat H. Soyama, T. Kikuchi, M. Nishikawa, and O. Takakuwa, Introduction of Compressive Residual Stress into Stainless Steel by Employing a Cavitating Jet in Air, Surf. Coat. Technol., 2011, 205, p 3167–3174CrossRef H. Soyama, T. Kikuchi, M. Nishikawa, and O. Takakuwa, Introduction of Compressive Residual Stress into Stainless Steel by Employing a Cavitating Jet in Air, Surf. Coat. Technol., 2011, 205, p 3167–3174CrossRef
54.
Zurück zum Zitat G.Q. Wang, X.P. Zhu, M.K. Lei, and D.M. Guo, Inverse Surface Integrity Problem in Ultrasonic Impact-Treated AISI, 304 Stainless Steel Components, Int. J. Adv. Manuf. Technol., 2016, 87, p 2033–2040CrossRef G.Q. Wang, X.P. Zhu, M.K. Lei, and D.M. Guo, Inverse Surface Integrity Problem in Ultrasonic Impact-Treated AISI, 304 Stainless Steel Components, Int. J. Adv. Manuf. Technol., 2016, 87, p 2033–2040CrossRef
55.
Zurück zum Zitat D. Karthik and S. Swaroop, Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI, 321 Steel, J. Mater. Eng. Perform., 2016, 25, p 2642–2650CrossRef D. Karthik and S. Swaroop, Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI, 321 Steel, J. Mater. Eng. Perform., 2016, 25, p 2642–2650CrossRef
56.
Zurück zum Zitat S. Clitheroe, M. Turski, A. Evans, J. Kelleher, and D. Hughe, Comparison of Peening Techniques on 304 Austenitic Stainless Steel, Conference Proceedings: ICSP-10 (2008), Doc ID: 2008044 S. Clitheroe, M. Turski, A. Evans, J. Kelleher, and D. Hughe, Comparison of Peening Techniques on 304 Austenitic Stainless Steel, Conference Proceedings: ICSP-10 (2008), Doc ID: 2008044
57.
Zurück zum Zitat D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, O.O. Danyleiko, Effects of the Combined Laser-Ultrasonic Surface Hardening Induced Microstructure and Phase State on Mechanical Properties of AISI D2 Tool Steel, in DSMIE 2019, LNMEV, eds. Ivanov et al. (2020), p 188–198. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, O.O. Danyleiko, Effects of the Combined Laser-Ultrasonic Surface Hardening Induced Microstructure and Phase State on Mechanical Properties of AISI D2 Tool Steel, in DSMIE 2019, LNMEV, eds. Ivanov et al. (2020), p 188–198.
Metadaten
Titel
Mechanical Surface Treatments of AISI 304 Stainless Steel: Effects on Surface Microrelief, Residual Stress, and Microstructure
verfasst von
D. A. Lesyk
H. Soyama
B. N. Mordyuk
V. V. Dzhemelinskyi
S. Martinez
N. I. Khripta
A. Lamikiz
Publikationsdatum
19.08.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04273-y

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Engineering and Performance 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.