Skip to main content

2019 | OriginalPaper | Buchkapitel

Mechanical Techniques for Enhanced Dispersion of Cellulose Nanocrystals in Polymer Matrices

verfasst von : Jamileh Shojaeiarani, Dilpreet S. Bajwa, Kerry Hartman

Erschienen in: Sustainable Polymer Composites and Nanocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanocrystals extracted from different biomass resources have a great potential as a reinforcing agent in nanocomposite materials owing to the excellent mechanical properties and environmental sustainability. The superior properties of cellulose nanocrystals in the different polymer matrix is stifled by the non-uniform dispersion through the polymer matrix. The main approaches for the production of cellulose nanocrystals materials are improving the dispersion quality of cellulose nanocrystals in the polymer matrix with different hydrophilicities. The application of different chemical-oriented surface modification methods has been extensively reported. However, still, the need for developing new manufacturing process capable of scaling up has motivated the academia to find out innovative mechanical techniques. In this chapter, the discussion is focused on the advances of the emerging ideas about nanocellulose materials manufacturing process with a main focus on the mechanical properties of the final product.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef
2.
Zurück zum Zitat Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4):1747–1764CrossRef Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4):1747–1764CrossRef
3.
Zurück zum Zitat Gozdecki C, Wilczyn A (2015) Effects of wood particle size and test specimen size on mechanical and water resistance properties of injected wood–high density polyethylene composite. Wood Fiber Sci 47(4):365–374 Gozdecki C, Wilczyn A (2015) Effects of wood particle size and test specimen size on mechanical and water resistance properties of injected wood–high density polyethylene composite. Wood Fiber Sci 47(4):365–374
4.
Zurück zum Zitat Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158CrossRef Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158CrossRef
5.
Zurück zum Zitat Wang Q, Zhao X, Zhu J (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014CrossRef Wang Q, Zhao X, Zhu J (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014CrossRef
6.
Zurück zum Zitat Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814CrossRef Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814CrossRef
7.
Zurück zum Zitat Ahola S, Turon X, Osterberg M, Laine J, Rojas O (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24(20):11592–11599CrossRef Ahola S, Turon X, Osterberg M, Laine J, Rojas O (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24(20):11592–11599CrossRef
8.
Zurück zum Zitat Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931 Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931
9.
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp (United States), vol 37, No. CONF-8205234-Vol. 2. ITT Rayonier Inc., Shelton, WA Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp (United States), vol 37, No. CONF-8205234-Vol. 2. ITT Rayonier Inc., Shelton, WA
10.
Zurück zum Zitat Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRef Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRef
11.
Zurück zum Zitat Hindi SS (2017) Differentiation and synonyms standardization of amorphous and crystalline cellulosic products. Nanosci Nanotechnol 4(3):73–85 Hindi SS (2017) Differentiation and synonyms standardization of amorphous and crystalline cellulosic products. Nanosci Nanotechnol 4(3):73–85
12.
Zurück zum Zitat Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9):2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9):2571–2576CrossRef
13.
Zurück zum Zitat Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef
14.
Zurück zum Zitat Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88CrossRef Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88CrossRef
15.
Zurück zum Zitat Nagalakshmaiah M (2016) Melt processing of cellulose nanocrystals: thermal, mechanical and rheological properties of polymer nanocomposites. Grenoble Alpes Nagalakshmaiah M (2016) Melt processing of cellulose nanocrystals: thermal, mechanical and rheological properties of polymer nanocomposites. Grenoble Alpes
16.
Zurück zum Zitat Hebeish A, Guthrie J (2012) The chemistry and technology of cellulosic copolymers, vol 4. Springer Science & Business Media Hebeish A, Guthrie J (2012) The chemistry and technology of cellulosic copolymers, vol 4. Springer Science & Business Media
17.
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef
18.
Zurück zum Zitat Popa V (2011) Polysaccharides in medicinal and pharmaceutical applications. Smithers Rapra Popa V (2011) Polysaccharides in medicinal and pharmaceutical applications. Smithers Rapra
19.
Zurück zum Zitat Sokolova Y, Shubanov S, Kandyrin L, Kalugina E (2009) Polymer nanocomposites and their structure and properties. A review. Plast Massy 3:18–23 Sokolova Y, Shubanov S, Kandyrin L, Kalugina E (2009) Polymer nanocomposites and their structure and properties. A review. Plast Massy 3:18–23
20.
Zurück zum Zitat Shojaeiarani J, Bajwa DS, Stark NM (2018) Green esterification: A new approach to improve thermal and mechanical properties of poly(lactic acid) composites reinforced by cellulose nanocrystals. J Appl Polym Sci Shojaeiarani J, Bajwa DS, Stark NM (2018) Green esterification: A new approach to improve thermal and mechanical properties of poly(lactic acid) composites reinforced by cellulose nanocrystals. J Appl Polym Sci
21.
Zurück zum Zitat Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779 Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779
22.
Zurück zum Zitat Lucia LA, Rojas O (2009) The nanoscience and technology of renewable biomaterials. Wiley Lucia LA, Rojas O (2009) The nanoscience and technology of renewable biomaterials. Wiley
23.
Zurück zum Zitat Thakur VK (2014) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley Thakur VK (2014) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley
24.
Zurück zum Zitat Rauwendaal C (2014) Polymer extrusion: Carl Hanser Verlag GmbH Co KG Rauwendaal C (2014) Polymer extrusion: Carl Hanser Verlag GmbH Co KG
25.
Zurück zum Zitat Giles Jr HF, Mount III EM, Wagner Jr JR (2004) Extrusion: the definitive processing guide and handbook. William Andrew Giles Jr HF, Mount III EM, Wagner Jr JR (2004) Extrusion: the definitive processing guide and handbook. William Andrew
26.
Zurück zum Zitat Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos sci technol 66(15):2776–2784CrossRef Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos sci technol 66(15):2776–2784CrossRef
27.
Zurück zum Zitat Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRef Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRef
28.
Zurück zum Zitat Pracella M, Haque MM-U, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55(16):3720–3728 Pracella M, Haque MM-U, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55(16):3720–3728
29.
Zurück zum Zitat Mariano M, El Kissi N, Dufresne A (2015) Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur Polym J 69:208–223CrossRef Mariano M, El Kissi N, Dufresne A (2015) Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur Polym J 69:208–223CrossRef
30.
Zurück zum Zitat Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747CrossRef Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747CrossRef
31.
Zurück zum Zitat Gong G, Mathew AP, Oksman K (2011) Toughening effect of cellulose nanowhiskers on polyvinyl acetate: fracture toughness and viscoelastic analysis. Polym Compos 32(10):1492–1498CrossRef Gong G, Mathew AP, Oksman K (2011) Toughening effect of cellulose nanowhiskers on polyvinyl acetate: fracture toughness and viscoelastic analysis. Polym Compos 32(10):1492–1498CrossRef
32.
Zurück zum Zitat Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHC, Marconcini JM (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21(1):311–322CrossRef Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHC, Marconcini JM (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21(1):311–322CrossRef
33.
Zurück zum Zitat Lee S-H, Teramoto Y, Endo T (2011) Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Compos A Appl Sci Manuf 42(2):151–156CrossRef Lee S-H, Teramoto Y, Endo T (2011) Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Compos A Appl Sci Manuf 42(2):151–156CrossRef
34.
Zurück zum Zitat Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra G, Kenny J, Puglia D (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polymer J 79:1–12CrossRef Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra G, Kenny J, Puglia D (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polymer J 79:1–12CrossRef
35.
Zurück zum Zitat Shojaeiarani J, Bajwa D, Stark N (2018) Spin-coating: a new approach for improving dispersion of cellulose nanocrytals and mechanical properties of poly(lactic acid) composites. Carbohyd polym Shojaeiarani J, Bajwa D, Stark N (2018) Spin-coating: a new approach for improving dispersion of cellulose nanocrytals and mechanical properties of poly(lactic acid) composites. Carbohyd polym
36.
Zurück zum Zitat Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic-inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer International Publishing, Cham, pp 311–325CrossRef Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic-inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer International Publishing, Cham, pp 311–325CrossRef
37.
Zurück zum Zitat Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRef Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRef
38.
Zurück zum Zitat Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from Ethylene Glycol solutions by pervaporation. Chem Eng Commun 202(3):316–321CrossRef Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from Ethylene Glycol solutions by pervaporation. Chem Eng Commun 202(3):316–321CrossRef
39.
Zurück zum Zitat Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53(7):1487–1493CrossRef Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53(7):1487–1493CrossRef
40.
Zurück zum Zitat Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43(13):6614–6624CrossRef Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43(13):6614–6624CrossRef
41.
Zurück zum Zitat Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2—selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS. GA-ANFIS. Int J Hydrogen Energy 42(22):15211–15225CrossRef Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2—selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS. GA-ANFIS. Int J Hydrogen Energy 42(22):15211–15225CrossRef
42.
Zurück zum Zitat Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(2):1128–1135CrossRef Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(2):1128–1135CrossRef
43.
Zurück zum Zitat Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(32):14035–14041CrossRef Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(32):14035–14041CrossRef
44.
Zurück zum Zitat Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284CrossRef Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284CrossRef
45.
Zurück zum Zitat Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589CrossRef Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589CrossRef
46.
Zurück zum Zitat Chinaglia DL, Gregorio R, Stefanello JC, Pisani Altafim RA, Wirges W, Wang F, Gerhard R (2010) Influence of the solvent evaporation rate on the crystalline phases of solution-cast poly (vinylidene fluoride) films. J Appl Polym Sci 116(2):785–791 Chinaglia DL, Gregorio R, Stefanello JC, Pisani Altafim RA, Wirges W, Wang F, Gerhard R (2010) Influence of the solvent evaporation rate on the crystalline phases of solution-cast poly (vinylidene fluoride) films. J Appl Polym Sci 116(2):785–791
47.
Zurück zum Zitat Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRef Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRef
48.
Zurück zum Zitat Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5(100):82460–82470CrossRef Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5(100):82460–82470CrossRef
49.
Zurück zum Zitat Farno E, Rezakazemi M, Mohammadi T, Kasiri N (2014) Ternary gas permeation through synthesized pdms membranes: experimental and CFD simulation basedon sorption-dependent system using neural network model. Polym Eng Sci 54(1):215–226CrossRef Farno E, Rezakazemi M, Mohammadi T, Kasiri N (2014) Ternary gas permeation through synthesized pdms membranes: experimental and CFD simulation basedon sorption-dependent system using neural network model. Polym Eng Sci 54(1):215–226CrossRef
50.
Zurück zum Zitat Favier V, Canova G, Cavaillé J, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355CrossRef Favier V, Canova G, Cavaillé J, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355CrossRef
51.
Zurück zum Zitat Siemann U (2005) Solvent cast technology—A versatile tool for thin film production. In: Scattering methods and the properties of polym mater, pp 307–316 Siemann U (2005) Solvent cast technology—A versatile tool for thin film production. In: Scattering methods and the properties of polym mater, pp 307–316
52.
Zurück zum Zitat Anbukarasu P, Sauvageau D, Elias A (2015) Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting. Sci Rep 5:17884CrossRef Anbukarasu P, Sauvageau D, Elias A (2015) Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting. Sci Rep 5:17884CrossRef
53.
Zurück zum Zitat Hsu S-T, Yao YL (2014) Effect of film formation method and annealing on morphology and crystal structure of Poly (l-Lactic Acid) films. J Manuf Sci Eng 136(2):021006CrossRef Hsu S-T, Yao YL (2014) Effect of film formation method and annealing on morphology and crystal structure of Poly (l-Lactic Acid) films. J Manuf Sci Eng 136(2):021006CrossRef
54.
Zurück zum Zitat Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20(4):991–997CrossRef Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20(4):991–997CrossRef
55.
Zurück zum Zitat Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Progr Energy Combust Sci 66:1–41CrossRef Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Progr Energy Combust Sci 66:1–41CrossRef
56.
Zurück zum Zitat Sadeghi A, Nazem H, Rezakazemi M, Shirazian S (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287CrossRef Sadeghi A, Nazem H, Rezakazemi M, Shirazian S (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287CrossRef
57.
Zurück zum Zitat Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRef
58.
Zurück zum Zitat Bruckner JR, Kuhnhold A, Honorato-Rios C, Schilling T, Lagerwall JP (2016) Enhancing self-assembly in cellulose nanocrystal suspensions using high-permittivity solvents. Langmuir 32(38):9854–9862CrossRef Bruckner JR, Kuhnhold A, Honorato-Rios C, Schilling T, Lagerwall JP (2016) Enhancing self-assembly in cellulose nanocrystal suspensions using high-permittivity solvents. Langmuir 32(38):9854–9862CrossRef
59.
Zurück zum Zitat Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRef Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRef
60.
Zurück zum Zitat Mellbring O, Kihlman Øiseth S, Krozer A, Lausmaa J, Hjertberg T (2001) Spin coating and characterization of thin high-density polyethylene films. Macromolecules 34(21):7496–7503CrossRef Mellbring O, Kihlman Øiseth S, Krozer A, Lausmaa J, Hjertberg T (2001) Spin coating and characterization of thin high-density polyethylene films. Macromolecules 34(21):7496–7503CrossRef
61.
Zurück zum Zitat Norrman K, Ghanbari-Siahkali A, Larsen N (2005) 6 Studies of spin-coated polymer films. Annu Rep Sect “C” (Physical Chemistry) 101:174–201 Norrman K, Ghanbari-Siahkali A, Larsen N (2005) 6 Studies of spin-coated polymer films. Annu Rep Sect “C” (Physical Chemistry) 101:174–201
62.
Zurück zum Zitat Hall DB, Underhill P, Torkelson JM (1998) Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38(12):2039–2045CrossRef Hall DB, Underhill P, Torkelson JM (1998) Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38(12):2039–2045CrossRef
63.
Zurück zum Zitat Syed JA, Lu H, Tang S, Meng X (2015) Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique. Appl Surf Sci 325:160–169CrossRef Syed JA, Lu H, Tang S, Meng X (2015) Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique. Appl Surf Sci 325:160–169CrossRef
64.
Zurück zum Zitat Brinker C, Hurd A, Schunk P, Frye G, Ashley C (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147:424–436CrossRef Brinker C, Hurd A, Schunk P, Frye G, Ashley C (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147:424–436CrossRef
65.
Zurück zum Zitat Danglad-Flores J, Eickelmann S, Riegler H (2018) Deposition of polymer films by spin casting: a quantitative analysis. Chem Eng Sci Danglad-Flores J, Eickelmann S, Riegler H (2018) Deposition of polymer films by spin casting: a quantitative analysis. Chem Eng Sci
66.
Zurück zum Zitat Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: a review. Indian J Phys 83(4):493–502CrossRef Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: a review. Indian J Phys 83(4):493–502CrossRef
67.
Zurück zum Zitat Lien S-Y, Wuu D-S, Yeh W-C, Liu J-C (2006) Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Sol Energy Mater Sol Cells 90(16):2710–2719CrossRef Lien S-Y, Wuu D-S, Yeh W-C, Liu J-C (2006) Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Sol Energy Mater Sol Cells 90(16):2710–2719CrossRef
68.
Zurück zum Zitat Emslie AG, Bonner FT, Peck LG (1958) Flow of a viscous liquid on a rotating disk. J Appl Phys 29(5):858–862CrossRef Emslie AG, Bonner FT, Peck LG (1958) Flow of a viscous liquid on a rotating disk. J Appl Phys 29(5):858–862CrossRef
69.
Zurück zum Zitat Herrera MA, Sirviö JA, Mathew AP, Oksman K (2016) Environmental friendly and sustainable gas barrier on porous materials: nanocellulose coatings prepared using spin-and dip-coating. Mater Des 93:19–25CrossRef Herrera MA, Sirviö JA, Mathew AP, Oksman K (2016) Environmental friendly and sustainable gas barrier on porous materials: nanocellulose coatings prepared using spin-and dip-coating. Mater Des 93:19–25CrossRef
70.
Zurück zum Zitat Zabihi F, Xie Y, Gao S, Eslamian M (2015) Morphology, conductivity, and wetting characteristics of PEDOT: PSS thin films deposited by spin and spray coating. Appl Surf Sci 338:163–177CrossRef Zabihi F, Xie Y, Gao S, Eslamian M (2015) Morphology, conductivity, and wetting characteristics of PEDOT: PSS thin films deposited by spin and spray coating. Appl Surf Sci 338:163–177CrossRef
Metadaten
Titel
Mechanical Techniques for Enhanced Dispersion of Cellulose Nanocrystals in Polymer Matrices
verfasst von
Jamileh Shojaeiarani
Dilpreet S. Bajwa
Kerry Hartman
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05399-4_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.