Skip to main content

2014 | OriginalPaper | Buchkapitel

4. Mechanical to Electrical Conversion

verfasst von : Steven Percy, Chris Knight, Scott McGarry, Alex Post, Tim Moore, Kate Cavanagh

Erschienen in: Thermal Energy Harvesting for Application at MEMS Scale

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As described in Chap. 3 many methods of harvesting thermal energy convert heat energy into mechanical energy; often, this is vibration. While mechanical energy may be of use in some systems, an additional stage of converting energy from mechanics or kinetics to electrical energy is generally required. In this chapter, devices that convert mechanical energy to electrical energy will be referred to as transducers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mitcheson PD, Yeatman EM, Rao GK et al (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486CrossRef Mitcheson PD, Yeatman EM, Rao GK et al (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486CrossRef
2.
Zurück zum Zitat Arnold DP, Allen MG (2010) Fabrication of microscale rotating magnetic machines. In: Lang J (ed) Multi-wafer rotating MEMS machines, pp 157–190 Arnold DP, Allen MG (2010) Fabrication of microscale rotating magnetic machines. In: Lang J (ed) Multi-wafer rotating MEMS machines, pp 157–190
3.
Zurück zum Zitat Priya S, Inman DJ (2008) Energy harvesting technologies, 1st ed. Springer, New York Priya S, Inman DJ (2008) Energy harvesting technologies, 1st ed. Springer, New York
4.
Zurück zum Zitat Kulkarni S, Koukharenko E, Torah R et al (2008) Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens Actuators, A 145:336–342CrossRef Kulkarni S, Koukharenko E, Torah R et al (2008) Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens Actuators, A 145:336–342CrossRef
5.
Zurück zum Zitat Beeby SP, Torah RN, Tudor MJ et al (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17:1257–1265CrossRef Beeby SP, Torah RN, Tudor MJ et al (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17:1257–1265CrossRef
6.
Zurück zum Zitat Arnold DP, Wang N (2009) Permanent magnets for MEMS. J Microelectromech Syst 18:1255–1266CrossRef Arnold DP, Wang N (2009) Permanent magnets for MEMS. J Microelectromech Syst 18:1255–1266CrossRef
7.
Zurück zum Zitat Young HD, Freedman RA (2004) University Physics, 13th ed. Addison Wesley, New York, pp 950–953 Young HD, Freedman RA (2004) University Physics, 13th ed. Addison Wesley, New York, pp 950–953
8.
Zurück zum Zitat Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43:3940–3951CrossRef Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43:3940–3951CrossRef
9.
Zurück zum Zitat Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J Appl Phys 103:101301–1013024CrossRef Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J Appl Phys 103:101301–1013024CrossRef
10.
Zurück zum Zitat Jiang Y, Masaoka S, Fujita T et al (2011) Fabrication of a vibration-driven electromagnetic energy harvester with integrated NdFeB/Ta multilayered micro-magnets. J Micromech Microeng 095014 Jiang Y, Masaoka S, Fujita T et al (2011) Fabrication of a vibration-driven electromagnetic energy harvester with integrated NdFeB/Ta multilayered micro-magnets. J Micromech Microeng 095014
11.
Zurück zum Zitat Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J Microelectromech Syst 19:14–27CrossRef Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J Microelectromech Syst 19:14–27CrossRef
12.
Zurück zum Zitat Turkyilmaz S, Kulah H, Muhtaroglu A (2010) Design and prototyping of second generation METU MEMS electromagnetic micro-power generators. Int Conf Energy Aware Comput, pp 16–18 Turkyilmaz S, Kulah H, Muhtaroglu A (2010) Design and prototyping of second generation METU MEMS electromagnetic micro-power generators. Int Conf Energy Aware Comput, pp 16–18
13.
Zurück zum Zitat Tang G, Liu JQ, Liu HS et al (2011) Piezoelectric MEMS generator based on the bulk PZT/silicon wafer bonding technique. Solid State Phys 208:2913–2919CrossRef Tang G, Liu JQ, Liu HS et al (2011) Piezoelectric MEMS generator based on the bulk PZT/silicon wafer bonding technique. Solid State Phys 208:2913–2919CrossRef
14.
Zurück zum Zitat Phillips JR (2008) Piezoelectric technology primer. CTS Wireless Components Phillips JR (2008) Piezoelectric technology primer. CTS Wireless Components
16.
Zurück zum Zitat Kim D, Park J (2010) Recent progress of piezoelectric MEMS for energy harvesting devices. Annual conference on experimental and applied mechanics: MEMS and nanotechnology. Bethel, vol 2, pp 17–24 Kim D, Park J (2010) Recent progress of piezoelectric MEMS for energy harvesting devices. Annual conference on experimental and applied mechanics: MEMS and nanotechnology. Bethel, vol 2, pp 17–24
17.
Zurück zum Zitat Bin FH, Liu JQ, Xu Z et al (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284 Bin FH, Liu JQ, Xu Z et al (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284
18.
Zurück zum Zitat Park J, Ahna H, Kim SB et al (2011) Comparison of transduction efficiency for energy harvester between piezoelectric modes. Soc Exp Mech Ann Conf: MEMS Nanotechnol 2:33–39CrossRef Park J, Ahna H, Kim SB et al (2011) Comparison of transduction efficiency for energy harvester between piezoelectric modes. Soc Exp Mech Ann Conf: MEMS Nanotechnol 2:33–39CrossRef
19.
Zurück zum Zitat Baker J, Roundy S, Wright P (2005) Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. 3rd international energy conversion engineering conference. American Institute of Aeronautics and Astronautics, Reston, pp 1–12 Baker J, Roundy S, Wright P (2005) Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. 3rd international energy conversion engineering conference. American Institute of Aeronautics and Astronautics, Reston, pp 1–12
20.
Zurück zum Zitat Cho JH, Richards RF, Bahr DF et al (2006) Efficiency of energy conversion by piezoelectrics. Appl Phys Lett 89:104103–104107CrossRef Cho JH, Richards RF, Bahr DF et al (2006) Efficiency of energy conversion by piezoelectrics. Appl Phys Lett 89:104103–104107CrossRef
22.
Zurück zum Zitat Ujihara M, Carman GP, Lee DG (2007) Thermal energy harvesting device using ferromagnetic materials. Appl Phys Lett 91:93503–93508CrossRef Ujihara M, Carman GP, Lee DG (2007) Thermal energy harvesting device using ferromagnetic materials. Appl Phys Lett 91:93503–93508CrossRef
23.
Zurück zum Zitat Bulgrin KE, Ju YS, Carman GP, Lavine AS (2009) A coupled thermal and mechanical model of a thermal energy harvesting device. ASME 2009 International Mechanical Engineering Congress & Exposition. Lake Buena Vista, Fl, pp 327–335 Bulgrin KE, Ju YS, Carman GP, Lavine AS (2009) A coupled thermal and mechanical model of a thermal energy harvesting device. ASME 2009 International Mechanical Engineering Congress & Exposition. Lake Buena Vista, Fl, pp 327–335
24.
Zurück zum Zitat Miao P, Holmes AS, Yeatman EM, Green TC (2003) Micro-machined variable capacitors for power generation. International conference on electrostatics. Edinburgh, pp 53–58 Miao P, Holmes AS, Yeatman EM, Green TC (2003) Micro-machined variable capacitors for power generation. International conference on electrostatics. Edinburgh, pp 53–58
25.
Zurück zum Zitat Torres EO, Rincon-Mora GA (2010) Self-tuning electrostatic energy-harvester IC. IEEE Trans Circuits Syst II Express Briefs 57:808–812CrossRef Torres EO, Rincon-Mora GA (2010) Self-tuning electrostatic energy-harvester IC. IEEE Trans Circuits Syst II Express Briefs 57:808–812CrossRef
26.
Zurück zum Zitat Torres EO, Rincon-Mora GA (2010) A 0.7- μm BiCMOS electrostatic energy-harvesting system IC. IEEE J Solid-State Circuits 45:483–496CrossRef Torres EO, Rincon-Mora GA (2010) A 0.7- μm BiCMOS electrostatic energy-harvesting system IC. IEEE J Solid-State Circuits 45:483–496CrossRef
27.
Zurück zum Zitat Meninger S, Mur-Miranda JO, Amirtharajah R et al (2001) Vibration-to-electric energy conversion. IEEE Trans Very Large Scale Integration (VLSI) Syst 9:64–76 Meninger S, Mur-Miranda JO, Amirtharajah R et al (2001) Vibration-to-electric energy conversion. IEEE Trans Very Large Scale Integration (VLSI) Syst 9:64–76
28.
Zurück zum Zitat Sterken T, Fiorini P, Baert K et al (2003) An electret-based electrostatic μ-generator. 12th international conference on transducers, solid-state sensors, actuators and microsystems. IEEE, Boston, pp 1291–1294 Sterken T, Fiorini P, Baert K et al (2003) An electret-based electrostatic μ-generator. 12th international conference on transducers, solid-state sensors, actuators and microsystems. IEEE, Boston, pp 1291–1294
30.
Zurück zum Zitat Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. ASME international mechanical engineering congress & exposition. New Orleans, p 39309 Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. ASME international mechanical engineering congress & exposition. New Orleans, p 39309
33.
Zurück zum Zitat Krupenkin TN, Madison NJ (2011) Method and apparatus for energy harvesting using microfluidics. U.S. Patent No. 8,053,914 Krupenkin TN, Madison NJ (2011) Method and apparatus for energy harvesting using microfluidics. U.S. Patent No. 8,053,914
Metadaten
Titel
Mechanical to Electrical Conversion
verfasst von
Steven Percy
Chris Knight
Scott McGarry
Alex Post
Tim Moore
Kate Cavanagh
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-9215-3_4

Neuer Inhalt