Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 2/2022

01.02.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Mechanically Synthesized Ti5Si3Сх/Ti2AlC Composite: Phase Analysis, Microstructure, and Properties

verfasst von: M. A. Eremina, S. F. Lomaeva, V. V. Tarasov

Erschienen in: Physics of Metals and Metallography | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The Ti5Si3Сх-based composites containing 10 vol % Ti2AlC, which are prepared by mechanical alloying of Ti, Si, and Al powders in a liquid hydrocarbon and subsequent heat treatment, are studied. The carbosilicide phase is found to form based on a silicide already at the mechanical alloying stage, whereas Ti2AlC forms during subsequent heat treatment. It is shown that, at 1300°С, the sintering of a sample takes place, which results in the formation of a porous (~13%) composite with a density of 3.75 ± 0.01 g/cm3 and a hardness of 10 ± 1 GPa. The dry friction coefficient of the composite, which is determined upon frictional tests with the WC/6Co alloy counterbody, is ~0.55.
Literatur
1.
Zurück zum Zitat L. Wang, W. Jiang, L. Chen, and G. Bai, “Microstructure of Ti 5Si 3–TiC–Ti 3SiC 2 and Ti 5Si 3–TiC nanocomposites in situ synthesized by spark plasma sintering,” J. Mater. Res. 19, No. 10, 3004–3008 (2004). CrossRef L. Wang, W. Jiang, L. Chen, and G. Bai, “Microstructure of Ti 5Si 3–TiC–Ti 3SiC 2 and Ti 5Si 3–TiC nanocomposites in situ synthesized by spark plasma sintering,” J. Mater. Res. 19, No. 10, 3004–3008 (2004). CrossRef
2.
Zurück zum Zitat K. Kasraee, M. Yousefpour, S. A. Tayebifard, and E. Salahi, “Microstructure and mechanical properties of an ultrafine grained Ti 5Si 3–TiC composite fabricated by spark plasma sintering,” Adv. Powder Technol. 30, 992–998 (2019). CrossRef K. Kasraee, M. Yousefpour, S. A. Tayebifard, and E. Salahi, “Microstructure and mechanical properties of an ultrafine grained Ti 5Si 3–TiC composite fabricated by spark plasma sintering,” Adv. Powder Technol. 30, 992–998 (2019). CrossRef
3.
Zurück zum Zitat M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (John Wiley & Sons, New York, 2013), p. 436. CrossRef M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (John Wiley & Sons, New York, 2013), p. 436. CrossRef
4.
Zurück zum Zitat J. Gonzales-Julian, “Processing of MAX phases: From synthesis to applications,” J. Am. Ceram. Soc. 104, No. 2, 659–690 (2020). CrossRef J. Gonzales-Julian, “Processing of MAX phases: From synthesis to applications,” J. Am. Ceram. Soc. 104, No. 2, 659–690 (2020). CrossRef
5.
Zurück zum Zitat K. Kasraee, A. Tayebifard, and E. Salahi, “Effect of substitution of Si by Al on microstructure and synthesis behavior of Ti 5Si 3 based alloys fabricated by mechanically activated self-propagating high-temperature synthesis,” Adv. Powder Technol. 25, 885–890 (2014). CrossRef K. Kasraee, A. Tayebifard, and E. Salahi, “Effect of substitution of Si by Al on microstructure and synthesis behavior of Ti 5Si 3 based alloys fabricated by mechanically activated self-propagating high-temperature synthesis,” Adv. Powder Technol. 25, 885–890 (2014). CrossRef
6.
Zurück zum Zitat M. Zha, H. Y. Wang, S. T. Li, S. L. Li, Q. L. Guan, and Q. C. Jiang, “Influence of Al addition on the products of self-propagating high-temperature synthesis of Al–Ti–Si system,” Mater. Chem. Phys. 114, 709–715 (2009). CrossRef M. Zha, H. Y. Wang, S. T. Li, S. L. Li, Q. L. Guan, and Q. C. Jiang, “Influence of Al addition on the products of self-propagating high-temperature synthesis of Al–Ti–Si system,” Mater. Chem. Phys. 114, 709–715 (2009). CrossRef
7.
Zurück zum Zitat C. L. Yeh and W. E. Sun, “Use of TiH 2 as a reactant in combustion synthesis of porous Ti 5Si 3 and Ti 5Si 3/TiAl intermetallics,” J. Alloys Compd. 669, 66–71 (2016). CrossRef C. L. Yeh and W. E. Sun, “Use of TiH 2 as a reactant in combustion synthesis of porous Ti 5Si 3 and Ti 5Si 3/TiAl intermetallics,” J. Alloys Compd. 669, 66–71 (2016). CrossRef
8.
Zurück zum Zitat A. Knaislová, P. Novák, M. Cabibbo, L. Jaworska, and D. Vojtӗch, “Development of TiAl–Si Alloys–A Review,” Materials 14, 1030 (2021). CrossRef A. Knaislová, P. Novák, M. Cabibbo, L. Jaworska, and D. Vojtӗch, “Development of TiAl–Si Alloys–A Review,” Materials 14, 1030 (2021). CrossRef
9.
Zurück zum Zitat R. Chen, H. Fang, X. Chen, Y. Su, H. Ding, J. Guo, and H. Fu, “Formation of TiC/Ti 2AlC and α 2 + γ in in-situ TiAl composites with different solidification paths,” Intermetallics 81, 9–15 (2017). CrossRef R. Chen, H. Fang, X. Chen, Y. Su, H. Ding, J. Guo, and H. Fu, “Formation of TiC/Ti 2AlC and α 2 + γ in in-situ TiAl composites with different solidification paths,” Intermetallics 81, 9–15 (2017). CrossRef
10.
Zurück zum Zitat C. Qin, L. Wang, S. Bai, W. Jiang, L. Chen, “Effect of Ti 3SiC 2 content on mechanical properties of Ti 5Si 3–TiC–Ti 3SiC 2 composites,” Key Eng. Mater. 336– 338, 1383–1385 (2007). CrossRef C. Qin, L. Wang, S. Bai, W. Jiang, L. Chen, “Effect of Ti 3SiC 2 content on mechanical properties of Ti 5Si 3–TiC–Ti 3SiC 2 composites,” Key Eng. Mater. 336338, 1383–1385 (2007). CrossRef
11.
Zurück zum Zitat K. P. Rao and Y. J. Du, “In situ formation of titanium silicides-reinforced TiAl-based composites,” Mater. Sci. Eng., A 277, 46–56 (2000). CrossRef K. P. Rao and Y. J. Du, “In situ formation of titanium silicides-reinforced TiAl-based composites,” Mater. Sci. Eng., A 277, 46–56 (2000). CrossRef
12.
Zurück zum Zitat F. Zhang, L. Zhao, S. Yan, J. He, and F. Yin, “Microstructure and mechanical properties of plasma sprayed TiC/Ti 5Si 3/Ti 3SiC 2 composite coatings with Al additions,” Ceram. Int. 46, 16298–16309 (2020). CrossRef F. Zhang, L. Zhao, S. Yan, J. He, and F. Yin, “Microstructure and mechanical properties of plasma sprayed TiC/Ti 5Si 3/Ti 3SiC 2 composite coatings with Al additions,” Ceram. Int. 46, 16298–16309 (2020). CrossRef
13.
Zurück zum Zitat Y. Liu, J. Chen, and Y. Zhou, “Effect of Ti 5Si 3 on wear properties of Ti 3Si(Al)C 2,” J. Eur. Ceram. Soc. 29, 3379–3385 (2009). CrossRef Y. Liu, J. Chen, and Y. Zhou, “Effect of Ti 5Si 3 on wear properties of Ti 3Si(Al)C 2,” J. Eur. Ceram. Soc. 29, 3379–3385 (2009). CrossRef
14.
Zurück zum Zitat A. Benamor, Y. Hadji, N. Chiker, A. Haddad, B. Guedouar, M. Labaiz, M. Hakem, A. Tricoteaux, C. Nivot, J. P. Erauw, R. Badji, and M. Hadji, “Spark Plasma Sintering and tribological behavior of Ti 3SiC 2–Ti 5Si 3–TiC composites,” Ceram. Int. 45, 21781–21792 (2019). CrossRef A. Benamor, Y. Hadji, N. Chiker, A. Haddad, B. Guedouar, M. Labaiz, M. Hakem, A. Tricoteaux, C. Nivot, J. P. Erauw, R. Badji, and M. Hadji, “Spark Plasma Sintering and tribological behavior of Ti 3SiC 2–Ti 5Si 3–TiC composites,” Ceram. Int. 45, 21781–21792 (2019). CrossRef
15.
Zurück zum Zitat C. Li, F. Zhang, J. He, and F. Yin, “Preparation and properties of reactive plasma sprayed TiC–Ti 5Si 3–Ti 3SiC 2/Al coatings from Ti–Si–C–Al mixed powders,” Mater. Chem. Phys. 269, 124772 (2021). CrossRef C. Li, F. Zhang, J. He, and F. Yin, “Preparation and properties of reactive plasma sprayed TiC–Ti 5Si 3–Ti 3SiC 2/Al coatings from Ti–Si–C–Al mixed powders,” Mater. Chem. Phys. 269, 124772 (2021). CrossRef
16.
Zurück zum Zitat L. Zhao, F. Zhang, L. Wang, S. Yan, J. He, and F. Yin, “Effects of post-annealing on microstructure and mechanical properties of plasma sprayed Ti–Si–C composite coatings with Al addition,” Surf. Coat. Technol. 416, 127164 (2021). CrossRef L. Zhao, F. Zhang, L. Wang, S. Yan, J. He, and F. Yin, “Effects of post-annealing on microstructure and mechanical properties of plasma sprayed Ti–Si–C composite coatings with Al addition,” Surf. Coat. Technol. 416, 127164 (2021). CrossRef
17.
Zurück zum Zitat Z. Wang, H. Zhang, X. Liu, Y. Jiang, H. Gao, and Y. He, “Reactive synthesis of porous nanolaminate Ti 3(Si,Al)C 2 intermetallic compound,” Mater. Chem. Phys. 208, 85–90 (2018). CrossRef Z. Wang, H. Zhang, X. Liu, Y. Jiang, H. Gao, and Y. He, “Reactive synthesis of porous nanolaminate Ti 3(Si,Al)C 2 intermetallic compound,” Mater. Chem. Phys. 208, 85–90 (2018). CrossRef
18.
Zurück zum Zitat X. Xu, T. L. Ngai, and Y. Li, “Synthesis and characterization of quarternary Ti 3Si (1 – x)Al xC 2 MAX phase materials,” Ceram. Int. 41, 7626–7631 (2015). CrossRef X. Xu, T. L. Ngai, and Y. Li, “Synthesis and characterization of quarternary Ti 3Si (1 – x)Al xC 2 MAX phase materials,” Ceram. Int. 41, 7626–7631 (2015). CrossRef
19.
Zurück zum Zitat J. Zhang, W. Liu, Y. Jin, S. Wu, T. Hu, Y. Li, and X. Xiao, “Study of the interfacial reaction between Ti 3SiC 2 particles and Al matrix,” J. Alloys Compd. 738, 1–9 (2018). CrossRef J. Zhang, W. Liu, Y. Jin, S. Wu, T. Hu, Y. Li, and X. Xiao, “Study of the interfacial reaction between Ti 3SiC 2 particles and Al matrix,” J. Alloys Compd. 738, 1–9 (2018). CrossRef
20.
Zurück zum Zitat V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, U. Hecht, S. V. Sleptsov, and T. Ya. Velikanova, “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd. 623, 480–496 (2015). CrossRef V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, U. Hecht, S. V. Sleptsov, and T. Ya. Velikanova, “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd. 623, 480–496 (2015). CrossRef
21.
Zurück zum Zitat I. A. Astapov, N. M. Vlasova, T. B. Ershova, and E. A. Kirichenko, “Phase formation during the sintering of A Ti-Al-SIC composite material,” Tsvetn. Met., No. 8, 75–79 (2018). I. A. Astapov, N. M. Vlasova, T. B. Ershova, and E. A. Kirichenko, “Phase formation during the sintering of A Ti-Al-SIC composite material,” Tsvetn. Met., No. 8, 75–79 (2018).
22.
Zurück zum Zitat K. Kasraee, M. Yousefpour, and S. A. Tayebifard, “Mechanical properties and microstructure of Ti 5Si 3 based composites prepared by combination of MASHS and SPS in Ti–Si–Ni and Ti–Si–Ni–C systems,” Mater. Chem. Phys. 222, 286–293 (2019). CrossRef K. Kasraee, M. Yousefpour, and S. A. Tayebifard, “Mechanical properties and microstructure of Ti 5Si 3 based composites prepared by combination of MASHS and SPS in Ti–Si–Ni and Ti–Si–Ni–C systems,” Mater. Chem. Phys. 222, 286–293 (2019). CrossRef
23.
Zurück zum Zitat A. J. Thom, V. G. Young, and M. Akinc, “Lattice trends in Ti 5Si 3Z x (Z = B, C, N, O and 0 < x < 1),” J. Alloys Compd. 296, 59–66 (2000). CrossRef A. J. Thom, V. G. Young, and M. Akinc, “Lattice trends in Ti 5Si 3Z x (Z = B, C, N, O and 0 < x < 1),” J. Alloys Compd. 296, 59–66 (2000). CrossRef
24.
Zurück zum Zitat Y.-S. Lee and S.-M. Lee, “Phase formation during mechanical alloying in the Ti–Si system,” Mater. Sci. Eng., A 449–451, 1099–1101 (2007). CrossRef Y.-S. Lee and S.-M. Lee, “Phase formation during mechanical alloying in the Ti–Si system,” Mater. Sci. Eng., A 449–451, 1099–1101 (2007). CrossRef
25.
Zurück zum Zitat U. K. Bhaskar and S. K. Pradhan, “Microstructure and optical characterization of mechanosynthesized nanostructured TiSi xN (1 – x) cermets,” Bull. Mater. Sci. 43, 34 (2020). CrossRef U. K. Bhaskar and S. K. Pradhan, “Microstructure and optical characterization of mechanosynthesized nanostructured TiSi xN (1 – x) cermets,” Bull. Mater. Sci. 43, 34 (2020). CrossRef
26.
Zurück zum Zitat M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of titanium carbosilicides in Ti–Si and Ti–Si–Cu systems under mechanical alloying of elemental powders in liquid hydrocarbon,” J. Solid State Chem. 290, 121575 (2020). CrossRef M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of titanium carbosilicides in Ti–Si and Ti–Si–Cu systems under mechanical alloying of elemental powders in liquid hydrocarbon,” J. Solid State Chem. 290, 121575 (2020). CrossRef
27.
Zurück zum Zitat J. Keskinen, A. Pogany, J. Rubin, and P. Ruuskanen, “Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane,” Mater. Sci. Eng., A 196, 205–211 (1995). CrossRef J. Keskinen, A. Pogany, J. Rubin, and P. Ruuskanen, “Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane,” Mater. Sci. Eng., A 196, 205–211 (1995). CrossRef
28.
Zurück zum Zitat M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of composite based on Ti 2AlC with added nanographite via wet ball milling followed by spark plasma sintering,” Mater. Chem. Phys. 273, 125114 (2021). CrossRef M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of composite based on Ti 2AlC with added nanographite via wet ball milling followed by spark plasma sintering,” Mater. Chem. Phys. 273, 125114 (2021). CrossRef
29.
Zurück zum Zitat S. Badie, A. Dash, Y. J. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, “Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti 2AlC ceramics,” J. Am. Ceram. Soc. 104, 1669–1688 (2021). CrossRef S. Badie, A. Dash, Y. J. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, “Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti 2AlC ceramics,” J. Am. Ceram. Soc. 104, 1669–1688 (2021). CrossRef
30.
Zurück zum Zitat D. G. Archer, “Enthalpy increment measurements from 4.5 K to 350 K and the thermodynamic properties of the titanium silicide Ti 5Si 3(Cr),” J. Chem. Eng. Data 41, 571–575 (1996). CrossRef D. G. Archer, “Enthalpy increment measurements from 4.5 K to 350 K and the thermodynamic properties of the titanium silicide Ti 5Si 3(Cr),” J. Chem. Eng. Data 41, 571–575 (1996). CrossRef
31.
Zurück zum Zitat J. J. Williams, “Structure and high-temperature properties of Ti 5Si 3 with interstitial additions,” Retrospective Theses and Dissertations, 12494 (1999), p. 124. https://​lib.​dr.​iastate.​edu/​rtd/​12494?​utm_​source=​lib.​dr.​ iastate.edu%2Frtd%2F12494&utm_medium=PDF&utm_campaign=PDFCoverPages J. J. Williams, “Structure and high-temperature properties of Ti 5Si 3 with interstitial additions,” Retrospective Theses and Dissertations, 12494 (1999), p. 124. https://​lib.​dr.​iastate.​edu/​rtd/​12494?​utm_​source=​lib.​dr.​ iastate.edu%2Frtd%2F12494&utm_medium=PDF&utm_campaign=PDFCoverPages
32.
Zurück zum Zitat G. Sharma, M. Naguib, D. Feng, Y. Gogotsi, and A. Navrotsky, “Calorimetric determination of thermodynamic stability of MAX and MXene phases,” J. Phys. Chem. C 120, No. 49, 28131–28137 (2016). CrossRef G. Sharma, M. Naguib, D. Feng, Y. Gogotsi, and A. Navrotsky, “Calorimetric determination of thermodynamic stability of MAX and MXene phases,” J. Phys. Chem. C 120, No. 49, 28131–28137 (2016). CrossRef
33.
Zurück zum Zitat T. Cabioc’h, P. Eklund, V. Mauchamp, and M. Jaouen, “Structural investigation of substoichiometry and solid solution effects in Ti 2Al(C x,N 1 – x) y compounds,” J. Eur. Ceram. Soc. 32, 1803–1811 (2012). CrossRef T. Cabioc’h, P. Eklund, V. Mauchamp, and M. Jaouen, “Structural investigation of substoichiometry and solid solution effects in Ti 2Al(C x,N 1 – x) y compounds,” J. Eur. Ceram. Soc. 32, 1803–1811 (2012). CrossRef
34.
Zurück zum Zitat E. I. Sokolova, N. A. Martirosyan, and M. D. Nersesyan, “Thermal stability of titanium carbohydrides,” Zh. Neorg. Khim. 26, No. 7, 1949–1951 (1981). E. I. Sokolova, N. A. Martirosyan, and M. D. Nersesyan, “Thermal stability of titanium carbohydrides,” Zh. Neorg. Khim. 26, No. 7, 1949–1951 (1981).
35.
Zurück zum Zitat S. Sabooni, F. Karimzadeh, and M. H. Abbasi, “Thermodynamic aspects of nanostructured Ti 5Si 3 formation during mechanical alloying and its characterization,” Bull. Mater. Sci. 35, No. 3, 439–447 (2012). CrossRef S. Sabooni, F. Karimzadeh, and M. H. Abbasi, “Thermodynamic aspects of nanostructured Ti 5Si 3 formation during mechanical alloying and its characterization,” Bull. Mater. Sci. 35, No. 3, 439–447 (2012). CrossRef
36.
Zurück zum Zitat S. Gupta and M. W. Barsoum, “On the tribology of the MAX phases and their composites during dry sliding: A review,” Wear 271, 1878–1894 (2011). CrossRef S. Gupta and M. W. Barsoum, “On the tribology of the MAX phases and their composites during dry sliding: A review,” Wear 271, 1878–1894 (2011). CrossRef
37.
Zurück zum Zitat F. Cheng, F. Li, L. Fu, Z. Qiao, J. Yang, and W. Liu, “Dry-sliding tribological properties of TiAl/Ti 2AlC composites,” Tribol. Lett. 53, 457–467 (2014). CrossRef F. Cheng, F. Li, L. Fu, Z. Qiao, J. Yang, and W. Liu, “Dry-sliding tribological properties of TiAl/Ti 2AlC composites,” Tribol. Lett. 53, 457–467 (2014). CrossRef
38.
Zurück zum Zitat L. G. Korshunov and N. L. Chernenko, “Formation of a wear-resistant nanocrystalline layer strengthened by TiO 2 (Rutile) particles on the surface of titanium,” Phys. Met. Metallogr. 114, 789–797 (2013). CrossRef L. G. Korshunov and N. L. Chernenko, “Formation of a wear-resistant nanocrystalline layer strengthened by TiO 2 (Rutile) particles on the surface of titanium,” Phys. Met. Metallogr. 114, 789–797 (2013). CrossRef
39.
Zurück zum Zitat M. A. H. El-Meniawia and E. Gewfiel, “Wear behavior of graphite nano plates/Al composites,” Phys. Met. Metallogr. 120, 78–86 (2019). CrossRef M. A. H. El-Meniawia and E. Gewfiel, “Wear behavior of graphite nano plates/Al composites,” Phys. Met. Metallogr. 120, 78–86 (2019). CrossRef
Metadaten
Titel
Mechanically Synthesized Ti5Si3Сх/Ti2AlC Composite: Phase Analysis, Microstructure, and Properties
verfasst von
M. A. Eremina
S. F. Lomaeva
V. V. Tarasov
Publikationsdatum
01.02.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 2/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2202003X

Weitere Artikel der Ausgabe 2/2022

Physics of Metals and Metallography 2/2022 Zur Ausgabe