Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 9/2017

07.06.2017

Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

verfasst von: Xijia Wu, Guangchun Quan, Clayton Sloss

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10−4 to 2 × 10−2 s−1. The ICFT formulates the material’s constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat R. Alain, P. Violan, J. Mendez, Material Science and Engineering A, 1997, vol. 229A, pp. 87-94.CrossRef R. Alain, P. Violan, J. Mendez, Material Science and Engineering A, 1997, vol. 229A, pp. 87-94.CrossRef
3.
Zurück zum Zitat S-G. Hong, S-B. Lee, T-S. Byun, Materials Science and Engineering A, 2007, vol. 457A, pp. 139–47.CrossRef S-G. Hong, S-B. Lee, T-S. Byun, Materials Science and Engineering A, 2007, vol. 457A, pp. 139–47.CrossRef
4.
Zurück zum Zitat Y.-J. Kim, H. Jang, Y.-J. Oh, Materials Science and Engineering A, 2009, vol. 526A, pp. 244–49.CrossRef Y.-J. Kim, H. Jang, Y.-J. Oh, Materials Science and Engineering A, 2009, vol. 526A, pp. 244–49.CrossRef
5.
Zurück zum Zitat L.F. Coffin Jr., ASME Trans., 1954, vol. 76, p.931. L.F. Coffin Jr., ASME Trans., 1954, vol. 76, p.931.
6.
Zurück zum Zitat J.D. Morrow: Cyclic plastic strain energy and fatigue of metals, Internal Friction, Damping and Cyclic Plasticity, ASTM STP, 1965, vol. 378, pp. 45–84. J.D. Morrow: Cyclic plastic strain energy and fatigue of metals, Internal Friction, Damping and Cyclic Plasticity, ASTM STP, 1965, vol. 378, pp. 45–84.
7.
Zurück zum Zitat J.L. Chaboche, International Journal of Plasticity, 2008, vol. 24, pp. 1642–93.CrossRef J.L. Chaboche, International Journal of Plasticity, 2008, vol. 24, pp. 1642–93.CrossRef
8.
9.
Zurück zum Zitat N. Thompson, and J.J. Wadsworth, Advances in Physics, 1958, vol. 7, pp. 72-169.CrossRef N. Thompson, and J.J. Wadsworth, Advances in Physics, 1958, vol. 7, pp. 72-169.CrossRef
10.
Zurück zum Zitat H. Mughrabi: in The Strength of Metals and Alloys, vol. 3, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, 1980, pp. 1615–39. H. Mughrabi: in The Strength of Metals and Alloys, vol. 3, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, 1980, pp. 1615–39.
11.
Zurück zum Zitat B.-T. Ma, and C. Laird, Acta Metallurgica, 1989, vol. 37, pp. 337-48.CrossRef B.-T. Ma, and C. Laird, Acta Metallurgica, 1989, vol. 37, pp. 337-48.CrossRef
13.
Zurück zum Zitat H.J. Frost, M.F Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, 1982. H.J. Frost, M.F Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, 1982.
15.
Zurück zum Zitat M.E. Kassner, T.A. Hayes, International Journal of Plasticity, 2003, vol. 19, pp. 1715–48.CrossRef M.E. Kassner, T.A. Hayes, International Journal of Plasticity, 2003, vol. 19, pp. 1715–48.CrossRef
16.
Zurück zum Zitat X.J. Wu, G. Quan, R. MacNeil, Z. Zhang, C. Sloss, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5088–97. X.J. Wu, G. Quan, R. MacNeil, Z. Zhang, C. Sloss, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5088–97.
17.
Zurück zum Zitat X.J. Wu, G. Quan, R. MacNeil, Z. Zhang, X. Liu, C. Sloss, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2530–43. X.J. Wu, G. Quan, R. MacNeil, Z. Zhang, X. Liu, C. Sloss, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2530–43.
18.
19.
Zurück zum Zitat X.J. Wu: ASME J. Gas Turbine Powers, 2009, vol. 131, pp. 032101/1–6. X.J. Wu: ASME J. Gas Turbine Powers, 2009, vol. 131, pp. 032101/1–6.
20.
Zurück zum Zitat X.J. Wu and A.K. Krausz, J. Mater. Eng. Performance, 1994, vol. 3, pp. 169-77.CrossRef X.J. Wu and A.K. Krausz, J. Mater. Eng. Performance, 1994, vol. 3, pp. 169-77.CrossRef
21.
Zurück zum Zitat J.P. Hirth, J. Lothe: Theory of Dislocation, Krieger Publishing Company, Malabar, 1992. J.P. Hirth, J. Lothe: Theory of Dislocation, Krieger Publishing Company, Malabar, 1992.
22.
Zurück zum Zitat A.S. Krausz and H. Eyring: Deformation Kinetics, Wiley, New York, 1975. A.S. Krausz and H. Eyring: Deformation Kinetics, Wiley, New York, 1975.
23.
Zurück zum Zitat W. Prager: Proc. 8th Int. Congr. Appl. Mech., Istanbul, 1952, vol. 2, p. 65. W. Prager: Proc. 8th Int. Congr. Appl. Mech., Istanbul, 1952, vol. 2, p. 65.
24.
Zurück zum Zitat X.J. Wu, Z. Zhang, L. Jiang, and P. Patnaik: J. Eng. Gas Turbines Power, 2017, vol. 139, pp. 052101/1–5. X.J. Wu, Z. Zhang, L. Jiang, and P. Patnaik: J. Eng. Gas Turbines Power, 2017, vol. 139, pp. 052101/1–5.
25.
Zurück zum Zitat S.-G. Hong, K.-O. Lee, J.-Y. Lim and S.-B. Lee, Key Engineering Materials, 2005, vol. 297-300, pp. 2477-82.CrossRef S.-G. Hong, K.-O. Lee, J.-Y. Lim and S.-B. Lee, Key Engineering Materials, 2005, vol. 297-300, pp. 2477-82.CrossRef
26.
Zurück zum Zitat C. Fressengeas, A.J. Beaudoin, M. Lebyodkin, L.P. Kubin, and Y. Estrin: Mater. Sci. Eng. A, 2005, vol. 400–401A, pp. 226–30. C. Fressengeas, A.J. Beaudoin, M. Lebyodkin, L.P. Kubin, and Y. Estrin: Mater. Sci. Eng. A, 2005, vol. 400–401A, pp. 226–30.
27.
Zurück zum Zitat A.K. Miller (ed.): Unified Constitutive Equations for Plastic Deformation and Creep of Engineering Alloys, Elsevier Applied Science Publishers, London, 1987, pp. 138–215. A.K. Miller (ed.): Unified Constitutive Equations for Plastic Deformation and Creep of Engineering Alloys, Elsevier Applied Science Publishers, London, 1987, pp. 138–215.
28.
Zurück zum Zitat S.-G. Hong, S.-B. Lee, Journal of Nuclear Materials, 2005, vol. 340, pp. 307–14.CrossRef S.-G. Hong, S.-B. Lee, Journal of Nuclear Materials, 2005, vol. 340, pp. 307–14.CrossRef
29.
30.
Zurück zum Zitat L. Taleb, G. Cailletaud, K. Saï, International Journal of Plasticity, 2014, vol. 61, pp. 32–48.CrossRef L. Taleb, G. Cailletaud, K. Saï, International Journal of Plasticity, 2014, vol. 61, pp. 32–48.CrossRef
31.
Zurück zum Zitat T. Seifert, C. Schweizer, M. Schlesinger, M. Moser, M. Eibl, Int. J. Mat. Res., 2010, vol. 101 (8), pp. 942-50.CrossRef T. Seifert, C. Schweizer, M. Schlesinger, M. Moser, M. Eibl, Int. J. Mat. Res., 2010, vol. 101 (8), pp. 942-50.CrossRef
Metadaten
Titel
Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel
verfasst von
Xijia Wu
Guangchun Quan
Clayton Sloss
Publikationsdatum
07.06.2017
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 9/2017
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-017-4160-4

Weitere Artikel der Ausgabe 9/2017

Metallurgical and Materials Transactions A 9/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.